.12 工程科学学报,第44卷,第X期 Storage Sci Technol,2014(3):262 [76]Ming J,Cao Z,Wu Y Q,et al.New insight on the role of (刘亚利,吴娇杨,李泓.锂离子电池基础科学问题(Ⅸ一非水液 electrolyte additives in rechargeable lithium ion batteries.ACS 体电解质材料.储能科学与技术,2014(3):262) Energy Letters,2019,4(11):2613 [65]Mu D Y,Liu Y L,Dai C S.Research progress in liquid organic [77]Li FF,Chen S M.Research progress on electrolyte additives for electrolyte for Li-ion battery.Battery Bimon,2019,49(1):68 high voltage lithium-ion batteries.Energy Storage Sci Technol, (穆德颖,刘元龙,戴长松.锂离子电池液态有机电解液的研究 2016,5(4):436 进展.电池,2019,49(1):68) (李放放,陈仕谋.高压锂离子电池电解液添加剂研究进展.储 [66]Zhang X Y,Zhou Y,Deng X Y,et al.Progress in LiBF-based 能科学与技术,2016,5(4):436) liquid electrolytes for Li-ion batteries.Chemistry,2007,70(12): [78]Zhou M J,Qin C Y,Liu Z,et al.Enhanced high voltage cyclability 929 of LiCoOz cathode by adopting poly[bis-(ethoxyethoxyethoxy) (张昕岳,周园,邓小宇,等.锂离子电池LBF,基液体电解质研究 phosphazene]with flame-retardant property as an electrolyte 进展.化学通报,2007,70(12):929) additive for lithium-ion batteries.App/SurfSci,2017,403:260 [67]Dong Q Y,Guo F,Cheng Z J,et al.Insights into the dual role of [79]Lee Y M,Nam K M,Hwang E H,et al.Interfacial origin of lithium difluoro(oxalato)borate additive in improving the performance improvement and fade for 4.6 V LiNio.sCoo2Mno.3O2 electrochemical performance of NMC811Graphite cells.A4CS battery cathodes.Phys Chem C,2014,118(20):10631 Appl Energy Mater,2020,3(1):695 [80]Zuo XX,Fan C J,Liu J S,et al.Effect of tris(trimethylsilyl)borate [68]Ehteshami N.Ibing L,Stolz L,et al.Ethylene carbonate-free on the high voltage capacity retention of LiNiosCoo.2Mno.3O2/ electrolytes for Li-ion battery:Study of the solid electrolyte graphite cells.Power Sources,2013,229:308 interphases formed on graphite anodes.J Power Sources,2020, [81]Xu H W,Shi J L.Hu G S,et al.Hybrid electrolytes incorporated 451:227804 with dandelion-like silane Al2O;nanoparticles for high-safety [69]Dougassa Y R,Jacquemin J,El Ouatani L,et al.Viscosity and high-voltage lithium ion batteries.Power Sources,2018,391: carbon dioxide solubility for LiPF6,LiTFSI,and LiFAP in alkyl 113 carbonates:lithium salt nature and concentration effect.J Phys [82]Park M S,Lim Y G,Kim J H,et al.A novel lithium-doping Chem B,2014,118(14):3973 approach for an advanced lithium ion capacitor.Ady Energy [70]Li M,Qiu J Y,Yu Z B,et al.New use of conducting salts in Maer,2011,1(6):1002 electrolytes of high power Li ion batteries.Chin J Power Sources, [83]Cao W J,Shih J,Zheng J P.et al.Development and 2015,39(1):191 characterization of Li-ion capacitor pouch cells./Power Sources, (李萌,邱景义,余仲宝,等.高功率锂离子电池电解液中导电锂 2014,257:388 盐的新应用.电源技术,2015,39(1):191) [84]Sun X Z,An Y B,Geng L B,et al.Leakage current and self- [71]Han H B,Zhou S S,Zhang D J,et al.Lithium discharge in lithium-ion capacitor.J Electroanal Chem,2019,850: bis(fluorosulfonyl)imide(LiFSI)as conducting salt for nonaqueous 113386 liquid electrolytes for lithium-ion batteries:Physicochemical and [85]Cao W J,Luo J F,Yan J,et al.High performance Li-ion capacitor electrochemical properties.JPower Sources,2011,196(7):3623 laminate cells based on hard carbon/lithium stripes negative [72]Balakrishnan P G,Ramesh R,Prem Kumar T.Safety mechanisms electrodes.J Electrochem Soc,2016,164(2):A93 in lithium-ion batteries.J Power Sources,2006,155(2):401 [86]Sun C K,Zhang X,Li C,et al.Recent advances in prelithiation [73]Yun JJ,Zhang L,Qu Q T,et al.A binary cyclic carbonates-based materials and approaches for lithium-ion batteries and capacitors. electrolyte containing propylene carbonate and trifluoropropylene Energy Storage Mater,2020,32:497 carbonate for 5 V lithium-ion batteries.Electrochim Acta,2015, [87]Jezowski P,Fic K,Crosnier O,et al.Lithium rhenium(vii)oxide as 167:151 a novel material for graphite pre-lithiation in high performance [74]Wu F,Zhou H,Bai Y,et al.Toward 5 V Li-ion batteries:Quantum lithium-ion capacitors.J Mater Chem A,2016,4(32):12609 chemical calculation and electrochemical characterization of [88]Guo Y T,Li X H,Wang Z X,et al.Bifunctional LiCoO serving sulfone-based high-voltage electrolytes.ACS Appl Mater as prelithiation reagent and pseudocapacitive electrode for lithium nterfaces,2015,7(27):15098 ion capacitors.J Energy Chem,2020,47:38 [75]Chen R J,Zhu L,Wu F,et al.Investigation of a novel terary [89]Zhang S S.Eliminating pre-lithiation step for making high energy electrolyte based on dimethyl sulfite and lithium density hybrid Li-ion capacitor.JPower Sources,2017,343:322 difluoromono(oxalato)borate for lithium ion batteries.Power [90]Park M S,Lim Y G,Hwang S M,et al.Scalable Integration of So1rces,2014,245:730 LisFeO towards robust,high-performance lithium-ion hybridStorage Sci Technol, 2014(3): 262 (刘亚利, 吴娇杨, 李泓. 锂离子电池基础科学问题(Ⅸ)—非水液 体电解质材料. 储能科学与技术, 2014(3):262) Mu D Y, Liu Y L, Dai C S. Research progress in liquid organic electrolyte for Li-ion battery. Battery Bimon, 2019, 49(1): 68 (穆德颖, 刘元龙, 戴长松. 锂离子电池液态有机电解液的研究 进展. 电池, 2019, 49(1):68) [65] Zhang X Y, Zhou Y, Deng X Y, et al. Progress in LiBF4 -based liquid electrolytes for Li-ion batteries. Chemistry, 2007, 70(12): 929 (张昕岳, 周园, 邓小宇, 等. 锂离子电池LiBF4基液体电解质研究 进展. 化学通报, 2007, 70(12):929) [66] Dong Q Y, Guo F, Cheng Z J, et al. Insights into the dual role of lithium difluoro(oxalato)borate additive in improving the electrochemical performance of NMC811||Graphite cells. ACS Appl Energy Mater, 2020, 3(1): 695 [67] Ehteshami N, Ibing L, Stolz L, et al. Ethylene carbonate-free electrolytes for Li-ion battery: Study of the solid electrolyte interphases formed on graphite anodes. J Power Sources, 2020, 451: 227804 [68] Dougassa Y R, Jacquemin J, El Ouatani L, et al. Viscosity and carbon dioxide solubility for LiPF6 , LiTFSI, and LiFAP in alkyl carbonates: lithium salt nature and concentration effect. J Phys Chem B, 2014, 118(14): 3973 [69] Li M, Qiu J Y, Yu Z B, et al. New use of conducting salts in electrolytes of high power Li ion batteries. Chin J Power Sources, 2015, 39(1): 191 (李萌, 邱景义, 余仲宝, 等. 高功率锂离子电池电解液中导电锂 盐的新应用. 电源技术, 2015, 39(1):191) [70] Han H B, Zhou S S, Zhang D J, et al. Lithium bis(fluorosulfonyl)imide (LiFSI) as conducting salt for nonaqueous liquid electrolytes for lithium-ion batteries: Physicochemical and electrochemical properties. J Power Sources, 2011, 196(7): 3623 [71] Balakrishnan P G, Ramesh R, Prem Kumar T. Safety mechanisms in lithium-ion batteries. J Power Sources, 2006, 155(2): 401 [72] Yun J J, Zhang L, Qu Q T, et al. A binary cyclic carbonates-based electrolyte containing propylene carbonate and trifluoropropylene carbonate for 5 V lithium-ion batteries. Electrochim Acta, 2015, 167: 151 [73] Wu F, Zhou H, Bai Y, et al. Toward 5 V Li-ion batteries: Quantum chemical calculation and electrochemical characterization of sulfone-based high-voltage electrolytes. ACS Appl Mater Interfaces, 2015, 7(27): 15098 [74] Chen R J, Zhu L, Wu F, et al. Investigation of a novel ternary electrolyte based on dimethyl sulfite and lithium difluoromono(oxalato)borate for lithium ion batteries. J Power Sources, 2014, 245: 730 [75] Ming J, Cao Z, Wu Y Q, et al. New insight on the role of electrolyte additives in rechargeable lithium ion batteries. ACS Energy Letters, 2019, 4(11): 2613 [76] Li F F, Chen S M. Research progress on electrolyte additives for high voltage lithium-ion batteries. Energy Storage Sci Technol, 2016, 5(4): 436 (李放放, 陈仕谋. 高压锂离子电池电解液添加剂研究进展. 储 能科学与技术, 2016, 5(4):436) [77] Zhou M J, Qin C Y, Liu Z, et al. Enhanced high voltage cyclability of LiCoO2 cathode by adopting poly[bis-(ethoxyethoxyethoxy) phosphazene] with flame-retardant property as an electrolyte additive for lithium-ion batteries. Appl Surf Sci, 2017, 403: 260 [78] Lee Y M, Nam K M, Hwang E H, et al. Interfacial origin of performance improvement and fade for 4.6 V LiNi0. 5Co0.2Mn0.3O2 battery cathodes. J Phys Chem C, 2014, 118(20): 10631 [79] Zuo X X, Fan C J, Liu J S, et al. Effect of tris(trimethylsilyl)borate on the high voltage capacity retention of LiNi0.5Co0.2Mn0.3O2 / graphite cells. J Power Sources, 2013, 229: 308 [80] Xu H W, Shi J L, Hu G S, et al. Hybrid electrolytes incorporated with dandelion-like silane Al2O3 nanoparticles for high-safety high-voltage lithium ion batteries. J Power Sources, 2018, 391: 113 [81] Park M S, Lim Y G, Kim J H, et al. A novel lithium-doping approach for an advanced lithium ion capacitor. Adv Energy Mater, 2011, 1(6): 1002 [82] Cao W J, Shih J, Zheng J P, et al. Development and characterization of Li-ion capacitor pouch cells. J Power Sources, 2014, 257: 388 [83] Sun X Z, An Y B, Geng L B, et al. Leakage current and selfdischarge in lithium-ion capacitor. J Electroanal Chem, 2019, 850: 113386 [84] Cao W J, Luo J F, Yan J, et al. High performance Li-ion capacitor laminate cells based on hard carbon/lithium stripes negative electrodes. J Electrochem Soc, 2016, 164(2): A93 [85] Sun C K, Zhang X, Li C, et al. Recent advances in prelithiation materials and approaches for lithium-ion batteries and capacitors. Energy Storage Mater, 2020, 32: 497 [86] Jeżowski P, Fic K, Crosnier O, et al. Lithium rhenium(vii) oxide as a novel material for graphite pre-lithiation in high performance lithium-ion capacitors. J Mater Chem A, 2016, 4(32): 12609 [87] Guo Y T, Li X H, Wang Z X, et al. Bifunctional Li6CoO4 serving as prelithiation reagent and pseudocapacitive electrode for lithium ion capacitors. J Energy Chem, 2020, 47: 38 [88] Zhang S S. Eliminating pre-lithiation step for making high energy density hybrid Li-ion capacitor. J Power Sources, 2017, 343: 322 [89] Park M S, Lim Y G, Hwang S M, et al. Scalable Integration of Li5FeO4 towards robust, high‐performance lithium‐ion hybrid [90] · 12 · 工程科学学报,第 44 卷,第 X 期