陈港欣等:高功率锂离子电池研究进展 ·11 Energy Storage Sci Technol,2017,6(1):94 nanocomposite:Demonstration of enhanced electrochemical (潘广宏,赵永彬,张开周,等.高功率锂离子电池钦/硬复合碳负 performance for sodium storage.Electrochimica Acta,2018,282: 极材料.储能科学与技术,2017,6(1):94) 351 [40]Zhang H T,Sun X Z,Zhang X,et al.High-capacity nanocarbon [52]Zhao X R,Zhang X,Li C,et al.High-performance lithium-ion anodes for lithium-ion batteries.JAlloys Compd,2015,622:783 capacitors based on CoO-graphene composite anode and holey [41]Zhang HT,Wang K,Zhang X,et al.Self-generating graphene and carbon nanolayer cathode.ACS Sustainable Chem Eng,2019, porous nanocarbon composites for capacitive energy storage.J 7(13:11275 Mater Chem A,2015,3(21):11277 [53]Yuan T Z,Jiang Y Z,Sun W P,et al.Ever-increasing [42]Lu Y,Zhang H,Cao G P,et al.The progress in improving rate pseudocapacitance in RGO-MnO-RGO sandwich nanostructures performance of anode material.Battery Bimon,2010, for ultrahigh-rate lithium storage.Ady Funct Mater,2016,26(13): 40(3):164 2198 (吕岩,张浩,曹高萍,等.提高负极材料L4T,O12倍率性能的进 [54]Liu H D,Zhu Z Y,Yan QZ,et al.A disordered rock salt anode for 展.电池2010,40(3):164) fast-charging lithium-ion batteries.Natre,2020,585(7823):63 [43]Qian DL,Gu Y J,Chen Y B,et al.Ultra-high specific capacity of [55]Liu W J,Zhang X,Li C.et al.Carbon-coated Li;VO with Cr-doped LiTisO2 at 1.55 V as anode material for lithium-ion optimized structure as high capacity anode material for lithium-ion batteries.Mater Lett,2019,238:102 capacitors.Chin Chem Lett,2020,31(9):2225 [44]Han Y H.Preparation and Electrochemical Performance of [56]Zhang S J,Li C.Zhang X,et al.High performance lithium-ion Lithium Titanate as Anode Materials for Li-lon Batteries hybrid capacitors employing Fe304-graphene composite anode and [Dissertation].Yantai:Yantai University,2019 activated carbon cathode.ACS Appl Mater Interfaces,2017, (韩叶虎.锂离子电池负极材料钛酸锂改性制备及电化学性能 9(20):17136 研究学位论文】.烟台:烟台大学,2019) [57]Qu X L,Ren Z H,Yang Y X,et al.Solid-state sintering strategy [45]Yan G L,Xu X R,Zhang W T,et al.Preparation and for simultaneous nanosizing and surface coating of iron oxides as electrochemical performance of ps-doped LiTiO as anode high-capacity anodes for long life Li-ion batteries.CS Appl material for lithium-ion batteries.Nanotechnology,2020,31(20): Energy Mater,,2018,1(11:6330 205402 [58]Qin L,Liu Y,Xu S Y,et al.In-plane assembled single-crystalline [46]Yan GLPreparation and Performance of Lithium Titanate Anode T-Nb2Os nanorods derived from few-layered Nb,CT,MXene Materials for Lithium-lon Batteries [Dissertation].Chengdu nanosheets for advanced Li-ion capacitors.Small Mehods,2020. Chengdu University of Technology,2020 4(12):2000630 (严桂林.锂离子电池用钛酸锂负极材料的制备与性能研究学 [59]Qu X L,Zhang X,Wu Y J,et al.An eggshell-structured N-doped 位论文].成都:成都理工大学,2020) silicon composite anode with high anti-pulverization and favorable [47]Zhao X R.An Q,Ma X D.et al.Research progress of metal oxides electronic conductivity.J Power Sources,2019,443:227265 as anode materials for lithium ion capacitors.Energy Storage Sci [60]Yang Y X,Ni C L,Gao M X,et al.Dispersion-strengthened Technol,2018,7(4):555 microparticle silicon composite with high anti-pulverization (赵兴茹,安琪,马向东,等.金属氧化物作为锂离子电容器负极 capability for Li-ion batteries.Energy Storage Mater,2018,14: 的研究进展.储能科学与技术,2018,7(4):555) 279 [48]Li C,Zhang X,Wang K,et al.A 29.3 Wh kg and 6 kW kg [61]An Y B,Chen S,Zou MM,et al.Improving anode performances pouch-type lithium-ion capacitor based on SiO/graphite of lithium-ion capacitors employing carbon-Si composites.Rare composite anode.J Power Sources,2019,414:293 MeL,2019,38(121113 [49]Sun X Z,Geng L B.Yi S,et al.Effects of carbon black on the [62]Xu K.Nonaqueous liquid electrolytes for lithium-based electrochemical performances of SiO,anode for lithium-ion rechargeable batteries.Chem Rev,2004,104(10):4303 capacitors.J Power Sources,2021,499:229936 [63]Zhuang Q C,Wu S,Liu W Y,et al.The research of organic [50]Lv PP,Zhao H L,Li Z L,et al.Citrate-nitrate gel combustion electrolyte solutions for Li-ion batteries.Electrochemistry,2001, synthesis of micro/nanostructured SiO/C composite as high- 7(4):403 performance lithium-ion battery anode.Solid State lon,2019,340: (庄全超,武山,刘文元,等.锂离子电池有机电解液研究.电化 115024 学,2001,7(4):403) [51]Lu XX,Mao Q N,Chen Y F,et al.A novel oxygen vacancy [64]Liu Y L,Wu J Y,Li H.Fundamental scientific aspects of lithium introduced microstructural reconstruction of SnO,-graphene ion batteries (IX)-Nonaqueous electrolyte materials.EnergyEnergy Storage Sci Technol, 2017, 6(1): 94 (潘广宏, 赵永彬, 张开周, 等. 高功率锂离子电池软/硬复合碳负 极材料. 储能科学与技术, 2017, 6(1):94) Zhang H T, Sun X Z, Zhang X, et al. High-capacity nanocarbon anodes for lithium-ion batteries. J Alloys Compd, 2015, 622: 783 [40] Zhang H T, Wang K, Zhang X, et al. Self-generating graphene and porous nanocarbon composites for capacitive energy storage. J Mater Chem A, 2015, 3(21): 11277 [41] Lu Y, Zhang H, Cao G P, et al. The progress in improving rate performance of anode material Li4Ti5O12. Battery Bimon, 2010, 40(3): 164 (吕岩, 张浩, 曹高萍, 等. 提高负极材料Li4Ti5O12倍率性能的进 展. 电池, 2010, 40(3):164) [42] Qian D L, Gu Y J, Chen Y B, et al. Ultra-high specific capacity of Cr3+-doped Li4Ti5O12 at 1.55 V as anode material for lithium-ion batteries. Mater Lett, 2019, 238: 102 [43] Han Y H. Preparation and Electrochemical Performance of Lithium Titanate as Anode Materials for Li-Ion Batteries [Dissertation]. Yantai: Yantai University, 2019 ( 韩叶虎. 锂离子电池负极材料钛酸锂改性制备及电化学性能 研究[学位论文]. 烟台: 烟台大学, 2019) [44] Yan G L, Xu X R, Zhang W T, et al. Preparation and electrochemical performance of P5+-doped Li4Ti5O12 as anode material for lithium-ion batteries. Nanotechnology, 2020, 31(20): 205402 [45] Yan G L. Preparation and Performance of Lithium Titanate Anode Materials for Lithium-Ion Batteries [Dissertation]. Chengdu: Chengdu University of Technology, 2020 ( 严桂林. 锂离子电池用钛酸锂负极材料的制备与性能研究[学 位论文]. 成都: 成都理工大学, 2020) [46] Zhao X R, An Q, Ma X D, et al. Research progress of metal oxides as anode materials for lithium ion capacitors. Energy Storage Sci Technol, 2018, 7(4): 555 (赵兴茹, 安琪, 马向东, 等. 金属氧化物作为锂离子电容器负极 的研究进展. 储能科学与技术, 2018, 7(4):555) [47] Li C, Zhang X, Wang K, et al. A 29.3 Wh kg−1 and 6 kW kg−1 pouch-type lithium-ion capacitor based on SiOx /graphite composite anode. J Power Sources, 2019, 414: 293 [48] Sun X Z, Geng L B, Yi S, et al. Effects of carbon black on the electrochemical performances of SiOx anode for lithium-ion capacitors. J Power Sources, 2021, 499: 229936 [49] Lv P P, Zhao H L, Li Z L, et al. Citrate-nitrate gel combustion synthesis of micro/nanostructured SiOx /C composite as highperformance lithium-ion battery anode. Solid State Ion, 2019, 340: 115024 [50] Lu X X, Mao Q N, Chen Y F, et al. A novel oxygen vacancy introduced microstructural reconstruction of SnO2 -graphene [51] nanocomposite: Demonstration of enhanced electrochemical performance for sodium storage. Electrochimica Acta, 2018, 282: 351 Zhao X R, Zhang X, Li C, et al. High-performance lithium-ion capacitors based on CoO-graphene composite anode and holey carbon nanolayer cathode. ACS Sustainable Chem Eng, 2019, 7(13): 11275 [52] Yuan T Z, Jiang Y Z, Sun W P, et al. Ever-increasing pseudocapacitance in RGO-MnO-RGO sandwich nanostructures for ultrahigh-rate lithium storage. Adv Funct Mater, 2016, 26(13): 2198 [53] Liu H D, Zhu Z Y, Yan Q Z, et al. A disordered rock salt anode for fast-charging lithium-ion batteries. Nature, 2020, 585(7823): 63 [54] Liu W J, Zhang X, Li C, et al. Carbon-coated Li3VO4 with optimized structure as high capacity anode material for lithium-ion capacitors. Chin Chem Lett, 2020, 31(9): 2225 [55] Zhang S J, Li C, Zhang X, et al. High performance lithium-ion hybrid capacitors employing Fe3O4 -graphene composite anode and activated carbon cathode. ACS Appl Mater Interfaces, 2017, 9(20): 17136 [56] Qu X L, Ren Z H, Yang Y X, et al. Solid-state sintering strategy for simultaneous nanosizing and surface coating of iron oxides as high-capacity anodes for long life Li-ion batteries. ACS Appl Energy Mater, 2018, 1(11): 6330 [57] Qin L, Liu Y, Xu S Y, et al. In-plane assembled single-crystalline T-Nb2O5 nanorods derived from few-layered Nb2CTx MXene nanosheets for advanced Li-ion capacitors. Small Methods, 2020, 4(12): 2000630 [58] Qu X L, Zhang X, Wu Y J, et al. An eggshell-structured N-doped silicon composite anode with high anti-pulverization and favorable electronic conductivity. J Power Sources, 2019, 443: 227265 [59] Yang Y X, Ni C L, Gao M X, et al. Dispersion-strengthened microparticle silicon composite with high anti-pulverization capability for Li-ion batteries. Energy Storage Mater, 2018, 14: 279 [60] An Y B, Chen S, Zou M M, et al. Improving anode performances of lithium-ion capacitors employing carbon–Si composites. Rare Met, 2019, 38(12): 1113 [61] Xu K. Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chem Rev, 2004, 104(10): 4303 [62] Zhuang Q C, Wu S, Liu W Y, et al. The research of organic electrolyte solutions for Li-ion batteries. Electrochemistry, 2001, 7(4): 403 (庄全超, 武山, 刘文元, 等. 锂离子电池有机电解液研究. 电化 学, 2001, 7(4):403) [63] Liu Y L, Wu J Y, Li H. Fundamental scientific aspects of lithium ion batteries (Ⅸ) —Nonaqueous electrolyte materials. Energy [64] 陈港欣等: 高功率锂离子电池研究进展 · 11 ·