正在加载图片...
邹星云等:MOF材料在水环境污染物去除方面的应用现状及发展趋势(I) 299· 多次循环利用是必然要解决的问题,另外,MOF stability of zeolitic imidazolate frameworks.Proc Natl Acad Sci, 材料多次循环利用过程中的结构理化特性演变, 2006,103(27):10186 以及基于演变的吸附性能变化研究几乎未见报 [11]Huang X C,Zhang J P,Chen X M.[Zn(bim)]*(H2O)1.67:metal- 导,对该问题进行研究有助于揭示MOF材料在 organic open skeleton with sodalite topology.Chin Sci Bull,2003, 48(14):1491 使用过程中各方面的变化情况,对于提高其使用 (黄晓春,张杰鹏,陈小明.Zn(bim](H2O)16:具有方钠石拓扑 寿命、辅助设计更加稳定的MOF材料都具有重要 结构的金属-有机敞开骨架.科学通报,2003,48(14):1491) 意义 [12]Huang X C.Lin YY,Zhang JP,et al.Ligand-directed strategy for (5)部分重金属存在两种价态,并且毒性差别 Zeolite-type metal-organic frameworks:Zinc(I)imidazolates with 较大(如As(II)和As(V),Cr(VI)和Cr(II)).因 unusual zeolitic topologies.Angew Chem Int Ed,2006,45(10): 此首先通过氧化还原反应改变重金属价态,然后 1557 [13]Hayashi H,CoteA P,Furukawa H,et al.Zeolite A imidazolate 再进行去除就成为了很重要的一种方法.因此开 frameworks.Nature Mater,2007,6(7):501 发出具有同步“氧化/还原一吸附”功能的MOF材 [14]Banerjee R,Phan A,Wang B,et al.High-throughput synthesis of 料也是未来重要的研究方向 zeolitic imidazolate frameworks and application to CO,capture. (6)虽然近年来报道的各类MOF材料已经超 Science,2008.319(5865):939 过了20000种,但广泛应用的仍然是传统的几类 [15]Wang B,Cote A P,Furukawa H,et al.Colossal cages in zeolitic 因此,针对未来多种需求(如高结构稳定性、高吸 imidazolate frameworks as selective carbon dioxide reservoirs. 附容量、高吸附选择性、长寿命、低成本、易回用 Nature,.2008,453(7192):207 等)开发出相应的MOF类材料仍然是该领域十分 [16]Ferey G,Serre C,Mellot-Draznieks C,et al.A hybrid solid with giant pores prepared by a combination of targeted chemistry, 重要的工作内容 simulation,and powder diffraction.Angew Chem Int Ed,2004, 43(46):6296 参考文献 [17]Ferey G,Mellot-Draznieks C,Serre C,et al.A chromium [1]Yaghi O M,Li G M,Li H L.Selective binding and removal of terephthalate-based solid with unusually large pore volumes and guests in a microporous metal-organic framework.Nature,1995, surface area Science,2005,309(5743):2040 378(6558):703 [18]Chui SS Y,Lo S M F,Charmant J P H,et al.A chemically [2]Kitagawa S,Kitaura R.Noro S I.Functional porous coordination functionalizable nanoporous material [Cu (TMA)(H2O) polymers.Angew Chem Int Ed,2004,43(18):2334 Science,.1999,283(5405):1148 [3]Judeinstein P,Sanchez C.Hybrid organic-inorganic materials:a [19]Cavka J H,Jakobsen S,Olsbye U,et al.A new zirconium land of multidisciplinarity.J Mater Chem,1996,6(4):511 inorganic building brick forming metal organic frameworks with [4]Janiak C.Functional organic analogues of zeolites based on metal- exceptional stability.JAm Chem Soc,2008.130(42):13850 organic coordination frameworks.Angew Chem Int Ed,1997, [20]Yang S H.Sun J L,Ramirez-Cuesta A J,et al.Selectivity and 36(13-14):1431 direct visualization of carbon dioxide and sulfur dioxide in a [5]Yaghi O M,Li H L.Hydrothermal synthesis of a metal-organic decorated porous host.Nature Chem,2012,4(11):887 framework containing large rectangular channels.JAm Chem Soc, [21]Farha O K,Eryazici I,Jeong N C,et al.Metal-organic framework 1995,117(41):10401 materials with ultrahigh surface areas:Is the sky the limit?/Am [6]Li H L,Eddaoudi M,Groy T L,et al.Establishing microporosity Chem Soc,2012,134(36:15016 in open metal-organic frameworks:gas sorption isotherms for [22]Savage M,Cheng Y Q,Easun T L,et al.Selective adsorption of Zn(BDC)(BDC=1,4-Benzenedicarboxylate).JAm Chem Soc, sulfur dioxide in a robust metal-organic framework material.Adv 1998,120(33):8571 Mater,2016,28(39:8705 [7]Li HL,Eddaoudi M,O'Keeffe M,et al.Design and synthesis of an [23]Wang C H,Liu XL,Demir NK,et al.Applications of water stable exceptionally stable and highly porous metal-organic framework. metal-organic frameworks.Chem Soc Rev,2016,45:5107 Nature,1999,402(6759):276 [24]Canivet J,Fateeva A,Guo Y M,et al.Water adsorption in MOFs: [8]Chae HK,Siberio-Perez D Y,Kim J,et al.A route to high surface fundamentals and applications.Chem Soc Rev,2014,43:5594 area,porosity and inclusion of large molecules in crystals.Narre. [25]Wen J,Fang Y,Zeng G M.Progress and prospect of adsorptive 2004,427(6974):523 removal of heavy metal ions from aqueous solution using metal- [9]Rosi N L,Kim J,Eddaoudi M,et al.Rod packings and metal- organic frameworks:a review of studies from the last decade. organic frameworks constructed from rod-shaped secondary Chemosphere,2018,201:627 building units.JAm Chem Soc,2005,127(5):1504 [26]Li J,Wang XX,Zhao G X,et al.Metal-organic framework-based [10]Park K S,NiZ,Cote A P,et al.Exceptional chemical and thermal materials:superior adsorbents for the capture of toxic and多次循环利用是必然要解决的问题. 另外,MOF 材料多次循环利用过程中的结构/理化特性演变, 以及基于演变的吸附性能变化研究几乎未见报 导,对该问题进行研究有助于揭示 MOF 材料在 使用过程中各方面的变化情况,对于提高其使用 寿命、辅助设计更加稳定的 MOF 材料都具有重要 意义. (5)部分重金属存在两种价态,并且毒性差别 较大(如 As(III)和 As(V),Cr(VI)和 Cr(III)). 因 此首先通过氧化/还原反应改变重金属价态,然后 再进行去除就成为了很重要的一种方法. 因此开 发出具有同步“氧化/还原—吸附”功能的 MOF 材 料也是未来重要的研究方向. (6)虽然近年来报道的各类 MOF 材料已经超 过了 20000 种,但广泛应用的仍然是传统的几类. 因此,针对未来多种需求(如高结构稳定性、高吸 附容量、高吸附选择性、长寿命、低成本、易回用 等)开发出相应的 MOF 类材料仍然是该领域十分 重要的工作内容. 参    考    文    献 Yaghi  O  M,  Li  G  M,  Li  H  L.  Selective  binding  and  removal  of guests  in  a  microporous  metal-organic  framework. Nature,  1995, 378(6558): 703 [1] Kitagawa S, Kitaura R, Noro S I. Functional porous coordination polymers. Angew Chem Int Ed, 2004, 43(18): 2334 [2] Judeinstein  P,  Sanchez  C.  Hybrid  organic-inorganic  materials:  a land of multidisciplinarity. J Mater Chem, 1996, 6(4): 511 [3] Janiak C. Functional organic analogues of zeolites based on metal￾organic  coordination  frameworks. Angew Chem Int Ed,  1997, 36(13-14): 1431 [4] Yaghi  O  M,  Li  H  L.  Hydrothermal  synthesis  of  a  metal-organic framework containing large rectangular channels. J Am Chem Soc, 1995, 117(41): 10401 [5] Li H L, Eddaoudi M, Groy T L, et al. Establishing microporosity in  open  metal-organic  frameworks:  gas  sorption  isotherms  for Zn(BDC)  (BDC=1,4-Benzenedicarboxylate). J Am Chem Soc, 1998, 120(33): 8571 [6] Li H L, Eddaoudi M, O'Keeffe M, et al. Design and synthesis of an exceptionally  stable  and  highly  porous  metal-organic  framework. Nature, 1999, 402(6759): 276 [7] Chae H K, Siberio-Pérez D Y, Kim J, et al. A route to high surface area, porosity and inclusion of large molecules in crystals. Nature, 2004, 427(6974): 523 [8] Rosi  N  L,  Kim  J,  Eddaoudi  M,  et  al.  Rod  packings  and  metal￾organic  frameworks  constructed  from  rod-shaped  secondary building units. J Am Chem Soc, 2005, 127(5): 1504 [9] [10] Park K S, Ni Z, Côté A P, et al. Exceptional chemical and thermal stability  of  zeolitic  imidazolate  frameworks. Proc Natl Acad Sci, 2006, 103(27): 10186 Huang X C, Zhang J P, Chen X M. [Zn(bim)2 ] •(H2O)1.67: metal￾organic open skeleton with sodalite topology. Chin Sci Bull, 2003, 48(14): 1491 (黄晓春, 张杰鹏, 陈小明. [Zn(bim)2 ]•(H2O)1.67: 具有方钠石拓扑 结构的金属‒有机敞开骨架. 科学通报, 2003, 48(14):1491) [11] Huang X C, Lin Y Y, Zhang J P, et al. Ligand-directed strategy for Zeolite-type metal-organic frameworks: Zinc(II) imidazolates with unusual  zeolitic  topologies. Angew Chem Int Ed,  2006,  45(10): 1557 [12] Hayashi  H,  CôtéA  P,  Furukawa  H,  et  al.  Zeolite  A  imidazolate frameworks. Nature Mater, 2007, 6(7): 501 [13] Banerjee R, Phan A, Wang B, et al. High-throughput synthesis of zeolitic  imidazolate  frameworks  and  application  to  CO2 capture. Science, 2008, 319(5865): 939 [14] Wang B, Côté A P, Furukawa H, et al. Colossal cages in zeolitic imidazolate  frameworks  as  selective  carbon  dioxide  reservoirs. Nature, 2008, 453(7192): 207 [15] Férey G, Serre C, Mellot‐Draznieks C, et al. A hybrid solid with giant  pores  prepared  by  a  combination  of  targeted  chemistry, simulation,  and  powder  diffraction. Angew Chem Int Ed,  2004, 43(46): 6296 [16] Férey  G,  Mellot-Draznieks  C,  Serre  C,  et  al.  A  chromium terephthalate-based  solid  with  unusually  large  pore  volumes  and surface area. Science, 2005, 309(5743): 2040 [17] Chui  S  S  Y,  Lo  S  M  F,  Charmant  J  P  H,  et  al.  A  chemically functionalizable  nanoporous  material  [Cu3 (TMA)2 (H2O)3 ]n . Science, 1999, 283(5405): 1148 [18] Cavka  J  H,  Jakobsen  S,  Olsbye  U,  et  al.  A  new  zirconium inorganic  building  brick  forming  metal  organic  frameworks  with exceptional stability. J Am Chem Soc, 2008, 130(42): 13850 [19] Yang  S  H,  Sun  J  L,  Ramirez-Cuesta  A  J,  et  al.  Selectivity  and direct  visualization  of  carbon  dioxide  and  sulfur  dioxide  in  a decorated porous host. Nature Chem, 2012, 4(11): 887 [20] Farha O K, Eryazici I, Jeong N C, et al. Metal-organic framework materials with ultrahigh surface areas: Is the sky the limit? J Am Chem Soc, 2012, 134(36): 15016 [21] Savage M, Cheng Y Q, Easun T L, et al. Selective adsorption of sulfur dioxide in a robust metal-organic framework material. Adv Mater, 2016, 28(39): 8705 [22] Wang C H, Liu X L, Demir N K, et al. Applications of water stable metal-organic frameworks. Chem Soc Rev, 2016, 45: 5107 [23] Canivet J, Fateeva A, Guo Y M, et al. Water adsorption in MOFs: fundamentals and applications. Chem Soc Rev, 2014, 43: 5594 [24] Wen  J,  Fang  Y,  Zeng  G  M.  Progress  and  prospect  of  adsorptive removal  of  heavy  metal  ions  from  aqueous  solution  using  metal￾organic  frameworks:  a  review  of  studies  from  the  last  decade. Chemosphere, 2018, 201: 627 [25] Li J, Wang X X, Zhao G X, et al. Metal-organic framework-based materials:  superior  adsorbents  for  the  capture  of  toxic  and [26] 邹星云等: MOF 材料在水环境污染物去除方面的应用现状及发展趋势(I) · 299 ·
<<向上翻页向下翻页>>
©2008-现在 cucdc.com 高等教育资讯网 版权所有