2008-2009学年一学有《线代我路束专就(B)-】 同济大学课程考核试卷(B卷) 6、设n维向量组士乌…,a,与n维向量组B:月,…,月具有相同的秩r,则下列说法中错 2008—2009学年第一学期 误的是 (4).若x则组与组等价B 命题教师签名: 审核教师签名: ().若组的每个向量都在组书,则组与组等你 (C).若组由组性表出,则组与组等邻 课号: 课名:线性代数B 考试考查:考试 (D).若组(A的陈为,则组与组等价B 此卷选为:期中考试人期终考试()、重考(√)试卷 1212 1323 年级 专业 学号 姓名」 任课教师 7、已知A为m×5库,AB=0,R(A)+R(B)=5,而B=(4,,a:)=2535 题号 三 四 五 七 总分 0111 得分 2646 (往堂:本共七大湿,三大张捕分100分.考的时圆为10分钟.要求出解圆过是晋测不子计分) 侧齐次线性方程组Ax=0的基础解系为 一、填空与选择题(注:均为单选题)(24分) (A).41(B.aa4,(C).42a4(D.43a4 1、设3阶方阵A满足4+-4+2E=A+3=0,则4+4= (001Y 8、设矩阵B=010, 2、已知n维向量r=(L,0,…,0,)了,A=E-a2x',其中a<0,又A=E+ar',则参 矩阵A相似于B,则R(B-E)+R(A-E)=一 (100 数a=_ 3、设n阶方阵A经过若干次初等变换可化为B,则必有」 二.(8分)设4阶方阵A=(a,…,a),B=(a1+,%2+3,a3+a4,a+),其中 (0.4=间 (B).可逆阵Q使得B=AQ 乌,…,心均为4维向量,己知A=m,求矩阵B的行列式. (C).R(A)=R(B) 铜解r=0Bx=0 4、已知3阶方阵A= 若存在非零矩阵B,使得AB=0,则参数 5、设A,B,C均为n阶方阵,则下列结论中错误的是」 (A).若A则=E均为可逆阵 (B).若A可使,咖 B=C (C).若A可逆,期 BA=CA (D).若AB①则A B=02008-2009 学年第一学期《线性代数 B》期末考试试卷(B 卷)--1 同济大学课程考核试卷(B 卷) 2008—2009 学年第一学期 命题教师签名:张莉 审核教师签名:靳全勤 课号: 课名:线性代数 B 考试考查:考试 此卷选为:期中考试( )、期终考试( )、重考( √ )试卷 年级 专业 学号 姓名 任课教师 题号 一 二 三 四 五 六 七 总分 得分 (注意:本试卷共七大题,三大张,满分 100 分.考试时间为 120 分钟.要求写出解题过程,否则不予计分) 一、填空与选择题(注:均为单选题)(24 分) 1、 设 3 阶方阵 A 满足 AE A E A E +=+ =+ = 2 30,则 A E + = 4 _____________. 2、 已知 n 维向量 (1,0, ,0,1) T x = , 2 T A E a xx = − ,其中a < 0 ,又 1 T A E axx − = + ,则参 数 a =_________________. 3 、 设 n 阶方阵 A 经过若干次初等变换可化为 B , 则 必 有 _____________. ( ). ( ). ( ). ( ) ( ) ( ). 0 0 A A B B Q B AQ C R A R B D Ax Bx = ∃= = = = 可逆阵,使得 与同解 4 、 已知 3 阶方阵 2 1 1 1 1 1 A λ λ λ λ = ,若存在非零矩阵 B ,使得 AB = 0 , 则参数 λ =____________. 5、 设 ABC , , 均为 n 阶方阵,则下列结论中错误的是_______________. ( ). ( ). ( ). ( ). 0 0 A ABC E A B C B AB AC A B C C AB AC A BA CA D AB A B = = = = = =≠ = 若,则,,均为可逆阵 若,且可逆,则 若,且可逆,则 若,且0,则 6、 设 n 维向量组 1 , A:α α s , 与n 维向量组 1 :,, B β β t 具有相同的秩r ,则下列说法中错 误的是 ________. ( ). ( ). ( ). ( ). ( ) A st A B B A B AB C A B A B D AB r A B 若,=则组与组等价 若组的每个向量都在组中,则组与组等价 若组可由组线性表出,则组与组等价 若组,的秩为,则组与组等价 7、 已知 A 为 m×5阵, AB = 0, RA RB () () 5 + = ,而 1 4 1212 1323 (, , ) 2535 0111 2646 B α α = = , 则齐次线性方程组 Ax = 0的基础解系为______________. 1 1 4 24 134 ( ). ( ). ( ). ( ). AB C D α αα αα ααα ,,,, 8、 设矩阵 001 010 100 B = ,矩阵 A 相似于 B ,则 RB E RA E ( )( ) −+ −= ________. 二、(8 分)设 4 阶方阵 1 4 A = (, , ) α α , 1 22 33 44 1 B =+ + + + (, , ,) α αα αα αα α ,其中 1 4 α α , , 均为 4 维向量,已知 A m= ,求矩阵 B 的行列式