正在加载图片...
.1180 北京科技大学学报 第35卷 中的氧含量,而释放更多的T可进入碳化物:随着 [9]Wang N Y.Research on Microstructure of Quench Solid- Hf含量增加,除形成HfO2氧化物外,剩余的Hf可 ified Ni-base Superalloy Rene'95 [Dissertation].Beijing: 取代部分T1进入块状碳化物中,使MC碳化物中 Beijing University of Iron and Steel Technology,1983 T含量降低,导致颗粒内部形成更稳定的碳化物,所 (王乃一.激冷凝固镍基高温合金Reme'95显微组织的研究 [学位论文].北京:北京钢铁学院,1983) 以添加Hf元素时要考虑粉末颗粒中的残余含氧量. [10]Li Q C,An G Y,Tang D G.Microsegregation during so- 4结论 lidification in Al-Cu alloy.J Harbin Inst Technol,1981(3): (1)等离子旋转电极工艺制备的急冷凝固 (李庆春,安阁英,唐多光.铝铜合金凝固过程的微观偏析 FGH96合金粉末颗粒中,随添加Hf含量增加,树 哈尔滨工业大学学报,1981(3):8) 枝晶、胞状长大晶和微晶凝固组织比例发生变化. [11]Wang J X,Huang J R,Lin J S.Metal Solidification and (2)不同Hf含量的FGH96合金粉末颗粒中, Control.Beijing:China Machine Press,1983 Nb、Ti和Zr均富集于枝晶间,Co、Cr、W和Ni均 (王家圻,黄积荣,林建生.金属的凝固及其控制.北京:机 富集于枝晶轴.当Hf质量分数为0.3%时,相同粒度 械工业出版社,1983) 级的粉未颗粒二次枝品臂间距最小,Ti、Nb、Zr、Hf [12 Gao R Z,Chen X G,Liu S M.Effect of cerium on the so- 等强碳化物形成元素的偏析程度最小 lidification and the dendritic segregation of steel.JUniv (3)在FGH96合金粉末中,添加Hf对氧元素 Sci Technol Beijing,1983,15(1):53 (高瑞珍,陈晓光,刘树模.稀土元素铈对钢的凝固和枝品 比碳含量更敏感,Hf优先形成稳定的氧化物HfO2 偏析的影响.北京科技大学学报,1983,15(1):53) 粉末中的残余含氧量与添加Hf元素量密切相关的. [13]Aziz M J.Model for solute redistribution during rapid (④)原始粉末颗粒中存在块状、条状和花朵状 solidification.J Appl Phys,1982,53(6):1158 MC型碳化物,主要分布在树枝晶和胞状晶间.粉 [14]Fernandez R,Lecomte J C,Kattamis T Z.Effect of solidi- 末颗粒快速凝固使残余液体内合金元素不能充分扩 fication parameters on the growth geometry of MC carbide 散,是导致碳化物形态多样、成分复杂的一个重要 in IN-100 dendritic monocrystals.Metall Trans A,1978, 原因. 9(12):1381 [15 Li H Y,Hu B F,Zhang S H.Comparison of microstructure 参考文献 and calculated solidification parameters between FGH95 [1]Raisson G.Evolution of PM nickel base superalloy pro- and Rene95 superalloy powders.J Univ Sci Technol Bei- cesses and products.Powder Metall,2008,50(1):10 jing.1987,19(Suppl 2):1 [2 Gessinger G H.Powder Metallurgy of Superalloys.Lon- (李慧英,胡本芙,章守华.FGH95与René95合金粉末凝固 don Boston:Butterworth Co.Ltd.,1984:35 参数和微观组织.北京科技大学学报,1987,19(增刊2):1) [3 Guo J T.Superalloy Materials.Beijing:Science Technol- [16]Chen Y,Wang H M.Steady and non-steady-state solid- ogy Press,2008 ification mechanism of MC carbide.Chin J Nonferrous (郭建亭.高温合金材料学.北京:科学技术出版社,2008) Met,2002,12(2):305 [4]Field RD,Cox AR,Fraser H L.Microstructure of rapidly (陈瑶,王华明.MC型碳化物的稳态/非稳态凝固转变机 solidified powders//Superalloys 1980.Ohio:Metals Park, 制.中因有色金属学报,2002,12(2):305) 1980:439 [17]Youdelis W V,Kwon O.Carbide phases in nickel base su- [5]Thamburaj R,Koul A K.Prior particle boundary pre- peralloy:nucleation properties of MC type carbide.Met cipitation in P/M superalloy /Modern Developments Sci,1983,17(8):385 in Powder Metallurgy.Metal Powder Industries and the [18 Ye D L,Hu J H.Handbook of Practical Inorganic Ther- American Powder Metallurgy Institute,1984:635 modynamic Data.Beijing:Metallurgical Industry Press, 6]Hu B F,Li H Y.A Method of Chemical Deposition Nickel 2002 Fized Alloy Powder for TEM:China Patent.0.124156.2. (叶大伦,胡建华。实用无机物热力学数据手册。北京:治 2002-07-12 金工业出版社,2002) (胡本芙,李慧英.一种用于透射电镜观察的化学沉积镍固 [19]Warren R.Ingesten N G,Winberg L.Particle surfaces 定合金粉末制样方法:中国专利,0.124156.2.2002-07-12) and prior particle boundaries in Hf modified PM astroloy [7]Smugeresky J E.Characterization of a rapidly solidified Powder Metall,1984,27(3):141 iron-based superalloy.Metall Trans A,1982,13(9):1535 [20 Miner R V.Effects of C and Hf concentration on 8 Jones H.Rapid Solidification of Metals and Alloys.Lon- phase relations and microstructure of a wrought powder don:Institute of Metallurgists,1982 metallurgy superalloy.Metall Trans A,1977,8(2):259· 1180 · 北 京 科 技 大 学 学 报 第 35 卷 中的氧含量,而释放更多的 Ti 可进入碳化物;随着 Hf 含量增加,除形成 HfO2 氧化物外,剩余的 Hf 可 取代部分 Ti 进入块状碳化物中,使 MC 碳化物中 Ti 含量降低,导致颗粒内部形成更稳定的碳化物,所 以添加 Hf 元素时要考虑粉末颗粒中的残余含氧量. 4 结论 (1) 等 离 子 旋 转 电 极 工 艺 制 备 的 急 冷 凝 固 FGH96 合金粉末颗粒中,随添加 Hf 含量增加,树 枝晶、胞状长大晶和微晶凝固组织比例发生变化. (2) 不同 Hf 含量的 FGH96 合金粉末颗粒中, Nb、Ti 和 Zr 均富集于枝晶间,Co、Cr、W 和 Ni 均 富集于枝晶轴. 当 Hf 质量分数为 0.3%时,相同粒度 级的粉末颗粒二次枝晶臂间距最小,Ti、Nb、Zr、Hf 等强碳化物形成元素的偏析程度最小. (3) 在 FGH96 合金粉末中,添加 Hf 对氧元素 比碳含量更敏感,Hf 优先形成稳定的氧化物 HfO2. 粉末中的残余含氧量与添加 Hf 元素量密切相关的. (4) 原始粉末颗粒中存在块状、条状和花朵状 MC0 型碳化物,主要分布在树枝晶和胞状晶间. 粉 末颗粒快速凝固使残余液体内合金元素不能充分扩 散,是导致碳化物形态多样、成分复杂的一个重要 原因. 参 考 文 献 [1] Raisson G. Evolution of PM nickel base superalloy pro￾cesses and products. Powder Metall, 2008, 50(1): 10 [2] Gessinger G H. Powder Metallurgy of Superalloys. Lon￾don & Boston: Butterworth & Co. Ltd., 1984: 35 [3] Guo J T. Superalloy Materials. Beijing: Science Technol￾ogy Press, 2008 (郭建亭. 高温合金材料学. 北京: 科学技术出版社, 2008) [4] Field R D, Cox A R, Fraser H L. Microstructure of rapidly solidified powders // Superalloys 1980.Ohio: Metals Park, 1980: 439 [5] Thamburaj R, Koul A K. Prior particle boundary pre￾cipitation in P/M superalloy // Modern Developments in Powder Metallurgy. Metal Powder Industries and the American Powder Metallurgy Institute, 1984: 635 [6] Hu B F, Li H Y. A Method of Chemical Deposition Nickel Fixed Alloy Powder for TEM: China Patent, 0.124156.2. 2002-07-12 (胡本芙, 李慧英. 一种用于透射电镜观察的化学沉积镍固 定合金粉末制样方法: 中国专利, 0.124156.2. 2002-07-12) [7] Smugeresky J E. Characterization of a rapidly solidified iron-based superalloy. Metall Trans A, 1982, 13(9): 1535 [8] Jones H. Rapid Solidification of Metals and Alloys. Lon￾don: Institute of Metallurgists, 1982 [9] Wang N Y. Research on Microstructure of Quench Solid￾ified Ni-base Superalloy Rene’95 [Dissertation]. Beijing: Beijing University of Iron and Steel Technology, 1983 (王乃一. 激冷凝固镍基高温合金 Rene’95 显微组织的研究 [学位论文]. 北京: 北京钢铁学院, 1983) [10] Li Q C, An G Y, Tang D G. Microsegregation during so￾lidification in Al-Cu alloy. J Harbin Inst Technol, 1981(3): 8 (李庆春, 安阁英, 唐多光. 铝铜合金凝固过程的微观偏析. 哈尔滨工业大学学报, 1981(3): 8) [11] Wang J X, Huang J R, Lin J S. Metal Solidification and Control. Beijing: China Machine Press, 1983 (王家炘, 黄积荣, 林建生. 金属的凝固及其控制. 北京:机 械工业出版社, 1983) [12] Gao R Z, Chen X G, Liu S M. Effect of cerium on the so￾lidification and the dendritic segregation of steel. J Univ Sci Technol Beijing, 1983, 15(1): 53 (高瑞珍, 陈晓光, 刘树模. 稀土元素铈对钢的凝固和枝晶 偏析的影响. 北京科技大学学报, 1983, 15(1): 53) [13] Aziz M J. Model for solute redistribution during rapid solidification. J Appl Phys, 1982, 53(6): 1158 [14] Fernandez R, Lecomte J C, Kattamis T Z. Effect of solidi- fication parameters on the growth geometry of MC carbide in IN-100 dendritic monocrystals. Metall Trans A, 1978, 9(12): 1381 [15] Li H Y, Hu B F, Zhang S H. Comparison of microstructure and calculated solidification parameters between FGH95 and Ren´e95 superalloy powders. J Univ Sci Technol Bei￾jing, 1987, 19(Suppl 2): 1 (李慧英, 胡本芙, 章守华. FGH95与Ren´e95合金粉末凝固 参数和微观组织. 北京科技大学学报, 1987, 19(增刊 2):1) [16] Chen Y, Wang H M. Steady and non-steady-state solid￾ification mechanism of MC carbide. Chin J Nonferrous Met, 2002, 12(2): 305 (陈瑶, 王华明. MC 型碳化物的稳态/非稳态凝固转变机 制. 中国有色金属学报, 2002, 12(2): 305) [17] Youdelis W V, Kwon O. Carbide phases in nickel base su￾peralloy: nucleation properties of MC type carbide. Met Sci, 1983, 17(8): 385 [18] Ye D L, Hu J H. Handbook of Practical Inorganic Ther￾modynamic Data. Beijing: Metallurgical Industry Press, 2002 (叶大伦, 胡建华. 实用无机物热力学数据手册. 北京: 冶 金工业出版社, 2002) [19] Warren R, Ingesten N G, Winberg L. Particle surfaces and prior particle boundaries in Hf modified PM astroloy. Powder Metall, 1984, 27(3): 141 [20] Miner R V. Effects of C and Hf concentration on phase relations and microstructure of a wrought powder￾metallurgy superalloy. Metall Trans A, 1977, 8(2): 259
<<向上翻页
©2008-现在 cucdc.com 高等教育资讯网 版权所有