2(b-a)f /(x≥0 ∫ycyh2“(k 5.设∫(x)∈Cla,b,且对于满足」qp(x)dtx=0的任意连续函数q(x), 都有f(x)gp(x)=0,证明:f(x)必恒为常数 证法一1利用积分中值定理,有 ∫(x)dtx=(b-a)f(5)=f(5)5∈a,b 于是,有|1f(x)-f(2)d=0 取qx)=/(x)-f(5),则」,q(x)dx=0,从而, f(5)q0(x)d (1) 由题设又有f(x)p(x)dt=0 由(1),(2)两式可得Jf(x)-f(5)(x)dt=0,即 Ipo(r)dx=0 故(x=0,即f(x)=/)=n0/(x)t 证法二令φ0(x)=∫(x) f(r) 证法三记J∫(x)t=A,于是有J1f(x)2( ) ( ) ( ) ( ) 0 2 2 − − − b a b a b a xf x dx b a f x dx 即 + b a b a f x dx a b xf x dx ( ) 2 ( ) 5. 设 f (x) C[a,b] ,且对于满足 ( ) = 0 b a x dx 的任意连续函数 (x) , 都有 ( ) ( ) = 0 b a f x x dx ,证明: f ( x) 必恒为常数. [证法一] 利用积分中值定理,有 = − = b a b a f (x)dx (b a) f ( ) f ( )dx [a,b] 于是,有 [ ( ) − ( )] = 0 b a f x f dx 取 ( ) ( ) ( ) 0 x = f x − f ,则 0 ( ) = 0 b a x dx ,从而, ( ) 0 ( ) = 0 b a f x dx (1) 由题设又有 ( ) 0 ( ) = 0 b a f x x dx (2) 由(1),(2)两式可得 [ ( ) − ( )] 0 ( ) = 0 b a f x f x dx ,即 [ ( )] 0 2 0 = b a x dx 故 0 (x) 0 , 即 − = b a f x dx b a f x f ( ) 1 ( ) ( ) [证法二] 令 − = − b a f x dx b a x f x ( ) 1 ( ) ( ) 0 [证法三] 记 f x dx A b a = ( ) ,于是有 [ ( ) ] = 0 − − b a dx b a A f x 取 b a A x f x − 0 ( ) = ( ) −