正在加载图片...
工程科学学报,第44卷,第X期 本文基于实验报道,构建了F掺杂的LSCF体相及 functional theory study.J Korean Ceram Soc,2015,52(5):331 表面模型,计算了最稳定(100)表面对氧气分子的 [11]Zhang M,Yang M,Hou Z F,et al.A bi-layered composite cathode 吸附性能、体内氧空位形成能及氧离子迁移活化 of LaSro2MnO3-YSZ and Lao.&Sro2MnO;-Lao4Ceo.601.s for IT- SOFCs.Electrochimica Acta,2008,53(15):4998 能的,并与未掺杂前的相应性质进行对比.结果证 [12]JiY,Kilner JA,Carolan M F.Electrical properties and oxygen 明,F离子参杂对晶格结构影响较小:较氧原子而 diffusion in yttria-stabilised zirconia (YSZ)-LaosSro2MnO 言,由于F原子得电子能力的降低,使近邻Fe原 (LSM)composites.Solid State lon,2005,176(9-10):937 子对顶位氧气分子的吸附能增强,利于后续氧还 [13]Zhao H,Huo L H.Gao S.Electrochemical properties of LSM- 原反应中氧气分子的解离;F掺杂提升了晶格中 CBO composite cathode.Power Sources,200,125(2):149 Fe-O键、Co-O键的键能,使氧空位形成能增大, [14]Qiu P,Wang A,Li J,et al.Promoted COz-poisoning resistance of 不利于氧空位的形成,掺杂过量将大幅降低氧空 Lao.sSro2MnO--coated Bao.sSrosCoo.sFeo.O cathode for intermediate temperature solid oxide fuel cells.J Power Sources 位浓度,影响阴极整体性能:F掺杂会大幅降低氧 2016,327:408 离子扩散的活化能,利于提升LSC℉阴极性能.综 [15]Vohs J M,Gorte R J.High-performance SOFC cathodes prepared 上所述,合理控制F在LSC℉中的参入量能够有效 by infiltration.Ady Mater,2009,21(9):943 提升阴极的性能,利于SOFC整体性能的提升 [16]Cui X Y,Ringer S P.On the nexus between atom probe microscopy and density functional theory simulations.Mater 参考文献 Charact,,2018,146:347 [1]Jiang S P.Advances and challenges of intermediate temperature [17]Yasuda I,Hishinuma M.Electrical conductivity and chemical diffusion coefficient of strontium-doped lanthanum manganites./ solid oxide fuel cells:A concise review.J Electrochem,2012 Solid State Chem,1996,123(2):382 18(6):479 [18]Zhang Z B,Zhu Y L,Zhong Y J,et al.Anion doping:A new [2]Liu Y F,Zhang X L,Li C J.Advances in carbon-based anode strategy for developing high-performance perovskite-type cathode materials for microbial fuel cells.Chin J Eng,2020,42(3):270 materials of solid oxide fuel cells.Ady Energy Mater,2017,7(17): (刘远峰,张秀玲,李从举.微生物燃料电池碳基阳极材料的研 1700242 究进展.工程科学学报,2020,42(3):270) [19]Xie Y,Shi N,Huan D M,et al.A stable and efficient cathode for [3]Liu S M,Deng Z F,Xu G Z,et al.Commercialization and future fluorine-containing proton-conducting solid oxide fuel cells development of the solid oxide fuel cell (SOFC)in Europe.ChinJ ChemSusChem,2018,11(19):3423 Eg,2020,42(3):278 [20]Kresse G,Furthmuller J.Efficient iterative schemes for ab initio (刘少名,邓占锋,徐桂芝,等,欧洲固体氧化物燃料电池 total-energy calculations using a plane-wave basis set.Plrys Rev B (SOFC)产业化现状.工程科学学报,2020,42(3):278) Condens Matter,,1996,54(16):11169 [4]Jiang Z Y,Xia C R,Chen F L.Nano-structured composite [21]Kresse G,Hafner J.Ab initio molecular-dynamics simulation of cathodes for intermediate-temperature solid oxide fuel cells via an the liquid-metal-amorphous-semiconductor transition in infiltration/impregnation technique.Electrochimica Acta,2010, germanium.Phys Rev B Condens Matter,1994,49(20):14251 55(11):3595 [22]Perdew J P,Burke K,Ernzerhof M.Generalized gradient [5]Zhang Y,Knibbe R,Sunarso J,et al.Recent progress on advanced approximation made simple.Phrys Rev Lett,1996,77(18):3865 materials for solid-oxide fuel cells operating below 500 C.Adv [23]Wang Y,Cheng H P.Oxygen reduction activity on perovskite Maer,2017,29(48):1700132 oxide surfaces:A comparative first-principles study of LaMnO:. [6]Zhang Y X,Ma J B,Li M,et al.Plasma glow discharge as a tool LaFeO3,and LaCrO3.J Phys Chem C,2013,117(5):2106 for surface modification of catalytic solid oxides:A case study of [24]Ritzmann A M,Dieterich J M,Carter E A.Density functional Lao.6Sro.4Coo2Feo.sO:s perovskite.Energies,2016,9(10):786 theory +U analysis of the electronic structure and defect chemistry [7]Liang F L,Chen J,Jiang S P,et al.High performance solid oxide of LSCF (LaosSrosCoo2Feo.750)Phys Chem Chem Phys, fuel cells with electrocatalytically enhanced (La,Sr)MnO; 2016,18(17):12260 cathodes.Electrochem Commun,2009,11(5):1048 [25]Cao Y P,Gadre M J,Ngo A T,et al.Factors controlling surface [8]Shao Z P,Haile S M.A high-performance cathode for the next oxygen exchange in oxides.Nat Commun,2019,10(1):1346 generation of solid-oxide fuel cells.Nature,2004,431(7005):170 [26]Kotomin E A,Evarestov R A,Mastrikov Y A,et al.DFT plane [9]Jia L C,Li K,Yan D,et al.Oxygen adsorption properties on a wave calculations of the atomic and electronic structure of palladium promoted LaSr,MnO3 solid oxide fuel cell cathode LaMnO3(001)surface.Plrys Chem Chem Phys,2005,7(11):2346 RSC Ad,2015,5(10):7761 [27]Kobko N,Dannenberg J J.Effect of basis set superposition error [10]Kwon H,Park J,Kim B K,et al.Effect of B-cation doping on (BSSE)upon ab initio calculations of organic transition states. oxygen vacancy formation and migration in LaBO,:A density Phys Chem A,2001,105(10):1944本文基于实验报道,构建了 F 掺杂的 LSCF 体相及 表面模型,计算了最稳定 (100) 表面对氧气分子的 吸附性能、体内氧空位形成能及氧离子迁移活化 能的,并与未掺杂前的相应性质进行对比. 结果证 明,F 离子掺杂对晶格结构影响较小;较氧原子而 言,由于 F 原子得电子能力的降低,使近邻 Fe 原 子对顶位氧气分子的吸附能增强,利于后续氧还 原反应中氧气分子的解离;F 掺杂提升了晶格中 Fe‒O 键、Co‒O 键的键能,使氧空位形成能增大, 不利于氧空位的形成,掺杂过量将大幅降低氧空 位浓度,影响阴极整体性能;F 掺杂会大幅降低氧 离子扩散的活化能,利于提升 LSCF 阴极性能. 综 上所述,合理控制 F 在 LSCF 中的掺入量能够有效 提升阴极的性能,利于 SOFC 整体性能的提升. 参    考    文    献 Jiang  S  P.  Advances  and  challenges  of  intermediate  temperature solid  oxide  fuel  cells:  A  concise  review. J Electrochem,  2012, 18(6): 479 [1] Liu  Y  F,  Zhang  X  L,  Li  C  J.  Advances  in  carbon-based  anode materials for microbial fuel cells. Chin J Eng, 2020, 42(3): 270 (刘远峰, 张秀玲, 李从举. 微生物燃料电池碳基阳极材料的研 究进展. 工程科学学报, 2020, 42(3):270) [2] Liu S M, Deng Z F, Xu G Z, et al. Commercialization and future development of the solid oxide fuel cell (SOFC) in Europe. Chin J Eng, 2020, 42(3): 278 (刘少名, 邓占锋, 徐桂芝, 等. 欧洲固体氧化物燃料电池 (SOFC)产业化现状. 工程科学学报, 2020, 42(3):278) [3] Jiang  Z  Y,  Xia  C  R,  Chen  F  L.  Nano-structured  composite cathodes for intermediate-temperature solid oxide fuel cells via an infiltration/impregnation  technique. Electrochimica Acta,  2010, 55(11): 3595 [4] Zhang Y, Knibbe R, Sunarso J, et al. Recent progress on advanced materials for  solid-oxide  fuel  cells  operating  below  500  ℃. Adv Mater, 2017, 29(48): 1700132 [5] Zhang Y X, Ma J B, Li M, et al. Plasma glow discharge as a tool for surface modification of catalytic solid oxides: A case study of La0.6Sr0.4Co0.2Fe0.8O3–δ perovskite. Energies, 2016, 9(10): 786 [6] Liang F L, Chen J, Jiang S P, et al. High performance solid oxide fuel  cells  with  electrocatalytically  enhanced  (La,  Sr)MnO3 cathodes. Electrochem Commun, 2009, 11(5): 1048 [7] Shao  Z  P,  Haile  S  M.  A  high-performance  cathode  for  the  next generation of solid-oxide fuel cells. Nature, 2004, 431(7005): 170 [8] Jia  L  C,  Li  K,  Yan  D,  et  al.  Oxygen  adsorption  properties  on  a palladium  promoted  La1–xSrxMnO3 solid  oxide  fuel  cell  cathode. RSC Adv, 2015, 5(10): 7761 [9] Kwon  H,  Park  J,  Kim  B  K,  et  al.  Effect  of  B-cation  doping  on oxygen  vacancy  formation  and  migration  in  LaBO3 :  A  density [10] functional theory study. J Korean Ceram Soc, 2015, 52(5): 331 Zhang M, Yang M, Hou Z F, et al. A bi-layered composite cathode of  La0Sr0.2MnO3 -YSZ  and  La0.8Sr0.2MnO3‒La0.4Ce0.6O1.8 for  IT￾SOFCs. Electrochimica Acta, 2008, 53(15): 4998 [11] Ji  Y,  Kilner  J  A,  Carolan  M  F.  Electrical  properties  and  oxygen diffusion  in  yttria-stabilised  zirconia  (YSZ)-La0.8Sr0.2MnO3±δ (LSM) composites. Solid State Ion, 2005, 176(9-10): 937 [12] Zhao  H,  Huo  L  H,  Gao  S.  Electrochemical  properties  of  LSM￾CBO composite cathode. J Power Sources, 2004, 125(2): 149 [13] Qiu P, Wang A, Li J, et al. Promoted CO2 -poisoning resistance of La0.8Sr0.2MnO3−δ-coated  Ba0.5Sr0.5Co0.8Fe0.2O3−δ cathode  for intermediate temperature solid oxide fuel cells. J Power Sources, 2016, 327: 408 [14] Vohs J M, Gorte R J. High-performance SOFC cathodes prepared by infiltration. Adv Mater, 2009, 21(9): 943 [15] Cui  X  Y,  Ringer  S  P.  On  the  nexus  between  atom  probe microscopy  and  density  functional  theory  simulations. Mater Charact, 2018, 146: 347 [16] Yasuda  I,  Hishinuma  M.  Electrical  conductivity  and  chemical diffusion coefficient of strontium-doped lanthanum manganites. J Solid State Chem, 1996, 123(2): 382 [17] Zhang  Z  B,  Zhu  Y  L,  Zhong  Y  J,  et  al.  Anion  doping:  A  new strategy for developing high-performance perovskite-type cathode materials of solid oxide fuel cells. Adv Energy Mater, 2017, 7(17): 1700242 [18] Xie Y, Shi N, Huan D M, et al. A stable and efficient cathode for fluorine-containing  proton-conducting  solid  oxide  fuel  cells. ChemSusChem, 2018, 11(19): 3423 [19] Kresse  G,  Furthmüller  J.  Efficient  iterative  schemes  for  ab  initio total-energy calculations using a plane-wave basis set. Phys Rev B Condens Matter, 1996, 54(16): 11169 [20] Kresse  G,  Hafner  J.  Ab  initio  molecular-dynamics  simulation  of the  liquid-metal-amorphous-semiconductor  transition  in germanium. Phys Rev B Condens Matter, 1994, 49(20): 14251 [21] Perdew  J  P,  Burke  K,  Ernzerhof  M.  Generalized  gradient approximation made simple. Phys Rev Lett, 1996, 77(18): 3865 [22] Wang  Y,  Cheng  H  P.  Oxygen  reduction  activity  on  perovskite oxide  surfaces:  A  comparative  first-principles  study  of  LaMnO3 , LaFeO3 , and LaCrO3 . J Phys Chem C, 2013, 117(5): 2106 [23] Ritzmann  A  M,  Dieterich  J  M,  Carter  E  A.  Density  functional theory + U analysis of the electronic structure and defect chemistry of  LSCF  (La05Sr0.5Co0.25Fe0.75O3–δ ).. Phys Chem Chem Phys, 2016, 18(17): 12260 [24] Cao Y P, Gadre M J, Ngo A T, et al. Factors controlling surface oxygen exchange in oxides. Nat Commun, 2019, 10(1): 1346 [25] Kotomin  E  A,  Evarestov  R  A,  Mastrikov  Y  A,  et  al.  DFT  plane wave  calculations  of  the  atomic  and  electronic  structure  of LaMnO3 (001) surface. Phys Chem Chem Phys, 2005, 7(11): 2346 [26] Kobko N, Dannenberg J J. Effect of basis set superposition error (BSSE)  upon  ab  initio  calculations  of  organic  transition  states. J Phys Chem A, 2001, 105(10): 1944 [27] · 6 · 工程科学学报,第 44 卷,第 X 期
<<向上翻页
©2008-现在 cucdc.com 高等教育资讯网 版权所有