正在加载图片...
教案 数学分析中一个反例的教学 教学内容 讲授数学分析发展历史上一个重要的反例:处处连续处处不可导的函数,以及这 反例对数学学科发展的影响;介绍德国数学家 Weierstrass的生平与对数学分析 所作的贡献 指导思想 通过讲授处处连续处处不可导的函数的例子与介绍德国数学家 Weierstrass的贡 献,使学生掌握函数项级数一致收敛理论的重要应用,认识到数学家如何通过从 提出猜想,到证明或否定猜想的过程,使数学学科得到发展的,从而使学生在今 后的学习中重视对反例的探讨。 教学安排 (1)德国数学家 Weierstrass的简单介绍 同学们,前一阶段,我们学习了函数项级数一致收敛的理论,有了这一基础, 我们可以来介绍一个在数学分析中非常重要的内容。这个结果是属于 Weierstrass 的。关于 Weierstrass这个名字,我们并不陌生(我们已学过以他的名字冠名的定 理有:有界数列必有收敛子列,函数项级数的 Weierstrass判别法等),在以后的 学习中,你们将会不断遇上 Weierstrass这个名字。 Karl Weierstrass(1815-1897 是19世纪德国数学家,他在数学的许多领域都作出了重大贡献,其中不少成果 是在他做中学教师时取得的。后来他被聘为柏林大学教授和法国巴黎科学院院 士。他是数学分析基础的主要奠基者之一,是把严格的数学论证引进分析学的 位大师。 Weierstrass利用单调有界的有理数数列来定义无理数,从而在严格的逻 辑基础上建立了实数理论;关于连续函数的分析定义(即E-6语言)也是他给 出的,这些贡献使得数学分析的叙述精确化,论证严格化。 (2)处处连续处处不可导的函数 在数学分析的发展历史上,数学家们一直猜测:连续函数在其定义区间中 至多除去可列个点外都是可导的。也就是说,连续函数的不可导点至多是可列集 在当时,由于函数的表示手段有限,而仅仅从初等函数或从分段初等函数表示的 角度出发去考虑,这个猜想是正确的。但是随着级数理论的发展,函数表示的 手段扩展了,数学家可以通过函数项级数来表示更广泛的函数类。 Weierstrass是 位研究级数理论的大师,他于1872年利用函数项级数第一个构造出了一个处 处连续而处处不可导的函数,为上述猜测做了一个否定的终结: ∑ 0<a<1<b 下面叙述的反例在证明上要相对简易些,它是由荷兰数学家 an der Waerden于1930年给出的 设φ(x)表示x与最邻近的整数之间的距离,例如当x=1.26,则q(x)=0.26 当x=367,则φ(x)=03显然(x)是周期为1的连续函数,且q(x)≤1/2。教案 数学分析中一个反例的教学 教学内容 讲授数学分析发展历史上一个重要的反例:处处连续处处不可导的函数,以及这 一反例对数学学科发展的影响;介绍德国数学家 Weierstrass 的生平与对数学分析 所作的贡献。 指导思想 通过讲授处处连续处处不可导的函数的例子与介绍德国数学家 Weierstrass 的贡 献,使学生掌握函数项级数一致收敛理论的重要应用,认识到数学家如何通过从 提出猜想,到证明或否定猜想的过程,使数学学科得到发展的,从而使学生在今 后的学习中重视对反例的探讨。 教学安排 (1)德国数学家 Weierstrass 的简单介绍 同学们,前一阶段,我们学习了函数项级数一致收敛的理论,有了这一基础, 我们可以来介绍一个在数学分析中非常重要的内容。这个结果是属于 Weierstrass 的。关于 Weierstrass 这个名字,我们并不陌生(我们已学过以他的名字冠名的定 理有:有界数列必有收敛子列,函数项级数的 Weierstrass 判别法等),在以后的 学习中,你们将会不断遇上 Weierstrass 这个名字。Karl Weierstrass (1815—1897) 是 19 世纪德国数学家,他在数学的许多领域都作出了重大贡献,其中不少成果 是在他做中学教师时取得的。后来他被聘为柏林大学教授和法国巴黎科学院院 士。他是数学分析基础的主要奠基者之一,是把严格的数学论证引进分析学的一 位大师。Weierstrass 利用单调有界的有理数数列来定义无理数,从而在严格的逻 辑基础上建立了实数理论;关于连续函数的分析定义(即ε −δ 语言)也是他给 出的,这些贡献使得数学分析的叙述精确化,论证严格化。 (2)处处连续处处不可导的函数 在数学分析的发展历史上,数学家们一直猜测:连续函数在其定义区间中, 至多除去可列个点外都是可导的。也就是说,连续函数的不可导点至多是可列集。 在当时,由于函数的表示手段有限,而仅仅从初等函数或从分段初等函数表示的 角度出发去考虑,这个猜想是正确的。 但是随着级数理论的发展,函数表示的 手段扩展了,数学家可以通过函数项级数来表示更广泛的函数类。Weierstrass 是 一位研究级数理论的大师,他于 1872 年利用函数项级数第一个构造出了一个处 处连续而处处不可导的函数,为上述猜测做了一个否定的终结: ( ) 0 ( ) sin n n n f x ab ∞ = = ∑ x , < < 10 < ba , ab > 1。 下面叙述的反例在证明上要相对简易些,它是由荷兰数学家 Van Der Waerden 于 1930 年给出的: 设 (x)表示 x 与最邻近的整数之间的距离,例如当 x = 1.26,则 (x) = 0.26; 当 x = 3.67,则 ϕ ϕ ϕ (x) = 0.33。显然ϕ (x)是周期为 1 的连续函数,且 。 x ≤ϕ 2/1)(
向下翻页>>
©2008-现在 cucdc.com 高等教育资讯网 版权所有