当前位置:高等教育资讯网  >  中国高校课件下载中心  >  大学文库  >  浏览文档

《数学分析》处处不可导的连续函数

资源类别:文库,文档格式:PDF,文档页数:3,文件大小:115.37KB,团购合买
讲授数学分析发展历史上一个重要的反例:处处连续处处不可导的函数,以及这 一反例对数学学科发展的影响;介绍德国数学家 Weierstrass 的生平与对数学分析 所作的贡献。
点击下载完整版文档(PDF)

教案 数学分析中一个反例的教学 教学内容 讲授数学分析发展历史上一个重要的反例:处处连续处处不可导的函数,以及这 反例对数学学科发展的影响;介绍德国数学家 Weierstrass的生平与对数学分析 所作的贡献 指导思想 通过讲授处处连续处处不可导的函数的例子与介绍德国数学家 Weierstrass的贡 献,使学生掌握函数项级数一致收敛理论的重要应用,认识到数学家如何通过从 提出猜想,到证明或否定猜想的过程,使数学学科得到发展的,从而使学生在今 后的学习中重视对反例的探讨。 教学安排 (1)德国数学家 Weierstrass的简单介绍 同学们,前一阶段,我们学习了函数项级数一致收敛的理论,有了这一基础, 我们可以来介绍一个在数学分析中非常重要的内容。这个结果是属于 Weierstrass 的。关于 Weierstrass这个名字,我们并不陌生(我们已学过以他的名字冠名的定 理有:有界数列必有收敛子列,函数项级数的 Weierstrass判别法等),在以后的 学习中,你们将会不断遇上 Weierstrass这个名字。 Karl Weierstrass(1815-1897 是19世纪德国数学家,他在数学的许多领域都作出了重大贡献,其中不少成果 是在他做中学教师时取得的。后来他被聘为柏林大学教授和法国巴黎科学院院 士。他是数学分析基础的主要奠基者之一,是把严格的数学论证引进分析学的 位大师。 Weierstrass利用单调有界的有理数数列来定义无理数,从而在严格的逻 辑基础上建立了实数理论;关于连续函数的分析定义(即E-6语言)也是他给 出的,这些贡献使得数学分析的叙述精确化,论证严格化。 (2)处处连续处处不可导的函数 在数学分析的发展历史上,数学家们一直猜测:连续函数在其定义区间中 至多除去可列个点外都是可导的。也就是说,连续函数的不可导点至多是可列集 在当时,由于函数的表示手段有限,而仅仅从初等函数或从分段初等函数表示的 角度出发去考虑,这个猜想是正确的。但是随着级数理论的发展,函数表示的 手段扩展了,数学家可以通过函数项级数来表示更广泛的函数类。 Weierstrass是 位研究级数理论的大师,他于1872年利用函数项级数第一个构造出了一个处 处连续而处处不可导的函数,为上述猜测做了一个否定的终结: ∑ 0<a<1<b 下面叙述的反例在证明上要相对简易些,它是由荷兰数学家 an der Waerden于1930年给出的 设φ(x)表示x与最邻近的整数之间的距离,例如当x=1.26,则q(x)=0.26 当x=367,则φ(x)=03显然(x)是周期为1的连续函数,且q(x)≤1/2

教案 数学分析中一个反例的教学 教学内容 讲授数学分析发展历史上一个重要的反例:处处连续处处不可导的函数,以及这 一反例对数学学科发展的影响;介绍德国数学家 Weierstrass 的生平与对数学分析 所作的贡献。 指导思想 通过讲授处处连续处处不可导的函数的例子与介绍德国数学家 Weierstrass 的贡 献,使学生掌握函数项级数一致收敛理论的重要应用,认识到数学家如何通过从 提出猜想,到证明或否定猜想的过程,使数学学科得到发展的,从而使学生在今 后的学习中重视对反例的探讨。 教学安排 (1)德国数学家 Weierstrass 的简单介绍 同学们,前一阶段,我们学习了函数项级数一致收敛的理论,有了这一基础, 我们可以来介绍一个在数学分析中非常重要的内容。这个结果是属于 Weierstrass 的。关于 Weierstrass 这个名字,我们并不陌生(我们已学过以他的名字冠名的定 理有:有界数列必有收敛子列,函数项级数的 Weierstrass 判别法等),在以后的 学习中,你们将会不断遇上 Weierstrass 这个名字。Karl Weierstrass (1815—1897) 是 19 世纪德国数学家,他在数学的许多领域都作出了重大贡献,其中不少成果 是在他做中学教师时取得的。后来他被聘为柏林大学教授和法国巴黎科学院院 士。他是数学分析基础的主要奠基者之一,是把严格的数学论证引进分析学的一 位大师。Weierstrass 利用单调有界的有理数数列来定义无理数,从而在严格的逻 辑基础上建立了实数理论;关于连续函数的分析定义(即ε −δ 语言)也是他给 出的,这些贡献使得数学分析的叙述精确化,论证严格化。 (2)处处连续处处不可导的函数 在数学分析的发展历史上,数学家们一直猜测:连续函数在其定义区间中, 至多除去可列个点外都是可导的。也就是说,连续函数的不可导点至多是可列集。 在当时,由于函数的表示手段有限,而仅仅从初等函数或从分段初等函数表示的 角度出发去考虑,这个猜想是正确的。 但是随着级数理论的发展,函数表示的 手段扩展了,数学家可以通过函数项级数来表示更广泛的函数类。Weierstrass 是 一位研究级数理论的大师,他于 1872 年利用函数项级数第一个构造出了一个处 处连续而处处不可导的函数,为上述猜测做了一个否定的终结: ( ) 0 ( ) sin n n n f x ab ∞ = = ∑ x , 1。 下面叙述的反例在证明上要相对简易些,它是由荷兰数学家 Van Der Waerden 于 1930 年给出的: 设 (x)表示 x 与最邻近的整数之间的距离,例如当 x = 1.26,则 (x) = 0.26; 当 x = 3.67,则 ϕ ϕ ϕ (x) = 0.33。显然ϕ (x)是周期为 1 的连续函数,且 。 x ≤ϕ 2/1)(

注意当x,y∈[k,k+]或[k+,k+1时,成立|q(x)-(y)Hx-y| Van der waerden给出的例子是: ∫(x) o(10x) 10 由 p(10x) 及 的收敛性,根据 Weierstrass判别法,上述函数 =6210 项级数关于x∈(-∞,+∞)一致收敛。所以f(x)在(-∞,+∞)连续 (3)处处不可导的证明 现考虑f(x)在任意一点x的可导性。由于f(x)的周期性,不妨设0≤x<1, 并将x表示成无限小数 x=0 若x是有限小数时,则在后面添上无穷多个0。然后我们取 10 当an=0,1,2,3,56,7,8 -10m,当an=49 例如设x=0309546…,则我们取h1=10-,h2=10-2,h3=-10-3,h4=10 hs=-10°,h6=10 显然 于是我们只要证明极限lmf(x+hn)-f(x)不存在。 h f(x+hm)-f(x) (10″(x+hn))-(10x) 10"h q(10°(x+hn)-0(10x)(10(x+hn)-q(100x) 10"h 10" h 当n≥m时,o(10°(x+hm)=9(102x±10m)=q(10x),所以 f(x+hn)-f(x)甲(10°(x+hn)-(10x) 0″ 当n=0,1.…,m-1,在10”x的表示中am的位置是第m-n位小数, 10x=a1a2…an,an+1…a 10(x+hn)=a1a2…an,an+1…(am±1)… 由hn的取法,可知10°(x+hm)与10x同时属于[k,k+如]或[k+,k+1,因此 q(10(x+bn))-φ(10x) 于是我们得到 f(x+hm)-f(x)=y ±1 等式右端必定是整数,且其奇偶性与m一致,由此可知极限 lin f(x+h,)-f(x) h 不存在,也就是说,f(x)在任意一点x是不可导的。这样,一个处处连续,但

注意当 x, y ] 2 1 ,[ kk +∈ 或 ]1, 2 1 [ kk ++ 时,成立 ϕ −ϕ = − yxyx |||)()(| 。 Van Der Waerden 给出的例子是: xf )( = ∑ ∞ = ϕ 0 10 )10( n n n x . 由 n n x 10 ϕ )10( ≤ n 102 1 ⋅ ,及∑ ∞ = ⋅ 0 102 1 n n 的收敛性,根据 Weierstrass 判别法,上述函数 项级数关于 x +∞−∞∈ ),( 一致收敛。所以 在xf )( −∞ +∞),( 连续。 (3)处处不可导的证明 现考虑 在任意一点 x 的可导性。由于 的周期性,不妨设 , 并将 x 表示成无限小数 xf )( xf )( x <≤ 10 x = 0.a1a2…an…。 若 x 是有限小数时,则在后面添上无穷多个 0。然后我们取 hm= ⎩ ⎨ ⎧ − = = − − ,9,4,10 ,10 ,8,7,6,5,3,2,1,0 m m m m a a 当 当 例如设x = 0.309546…,则我们取h1 = ,h 1 10− 2 = ,h 2 10 − 3 = ,h 3 10 − − 4 = , h 4 10 − 5 = ,h 5 10 − − 6= 10 −6 ,…。显然 hm → 0 ( m → ∞ )。 于是我们只要证明极限 m m m h xfhxf )()( lim −+ ∞→ 不存在。 m m h −+ xfhxf )()( = ∑ ∞ = ϕ−+ϕ 0 10 )10())(10( n m n n m n h hx x ∑ − = ϕ−+ϕ = 1 0 10 )10())(10( m n m n n m n h hx x ∑ ∞ = ϕ−+ϕ + mn m n n m n h hx x 10 )10())(10( 当 时, ≥ mn ϕ (10n (x + hm)) = ϕ (10n x± ) = −mn 10 ϕ (10n x),所以 m m h −+ xfhxf )()( ∑ − = ϕ−+ϕ = 1 0 10 )10())(10( m n m n n m n h hx x . 当n = L m −1,,2,1,0 ,在 的表示中 的位置是第 x n 10 am − nm 位小数, 10 . , n = 21 L nn +1 aaaaax m LL )(10 ,)1(. n m =+ 21 L nn +1L aaaaahx m ± L 由 的取法,可知 hm 10n (x + hm)与10n x同时属于 ] 2 1 ,[ kk + 或 ]1, 2 1 [ kk ++ ,因此 ϕ ( (x + )) - n 10 hm ϕ ( x) = n 10 ± m n 10 h , 于是我们得到 m m h −+ xfhxf )()( = ∑ , − = ± 1 0 1 m n 等式右端必定是整数,且其奇偶性与 m 一致,由此可知极限 m ∞→ lim m m h + − xfhxf )()( 不存在,也就是说, 在任意一点 xf )( x 是不可导的。这样,一个处处连续,但

处处不可导的函数反例通过了函数项级数这一工具而被构造出来了。 (4)电子课件演示 (5)总结 Weierstrass的反例构造出来后,在数学界引起极大的震动,因为对于这类函 数,传统的数学方法已无能为力,这使得经典数学陷入又一次危机。但是反过来 危机的产生又促使数学家们去思索新的方法对这类函数进行研究,从而促成了 门新的学科“分形几何”的产生。所谓“分形”,就是指几何上的一种“形”,它 的局部与整体按某种方式具有相似性。“形”的这种性质又称为“自相似性”。 我们知道,经典几何学研究的对象是规则而光滑的几何图形,但是自然界存 在着许多不规则不光滑的几何图形,它们都具有上面所述的“自相似性”。如云 彩的边界;山峰的轮廓;奇形怪状的海岸线;蜿蜒曲折的河流;材料的无规则裂 缝,等等。这些变化无穷的曲线,虽然处处连续,但可能处处不可导。因此“分 形几何”自产生起,就得到了数学家们普遍的关注,很快就发展为一门有着广泛 应用前景的新的学科。 通过这个例子,同学们可以了解到数学学科的发展规律,认识到一个反例如 何促成一门新学科的产生。希望同学们在今后的学习中,重视对反例的探索。 注意点 (1)在 Weierstrass反例的证明中,注意hn的符号的选取是证明的关键。这样的 符号选取保证了当n=0,12…,m-1时,10″(x+hn)与10″x或者同时属于 [k,k+],或者同时属于[+,k+1,从而有 f(x+h)-f(x)eo(10°(x+hn)-9(10°x)=∑±1 h 10"h (2)在用电子课件演示 Weierstrass反例的几何性状时,应强调 Weierstrass函数 的局部与整体性质上的相似性,从而使学生对“分形”有一个初步的感性认识

处处不可导的函数反例通过了函数项级数这一工具而被构造出来了。 (4)电子课件演示 (5)总结 Weierstrass 的反例构造出来后,在数学界引起极大的震动,因为对于这类函 数,传统的数学方法已无能为力,这使得经典数学陷入又一次危机。但是反过来 危机的产生又促使数学家们去思索新的方法对这类函数进行研究,从而促成了一 门新的学科“分形几何”的产生。所谓“分形”,就是指几何上的一种“形”,它 的局部与整体按某种方式具有相似性。“形”的这种性质又称为“自相似性”。 我们知道,经典几何学研究的对象是规则而光滑的几何图形,但是自然界存 在着许多不规则不光滑的几何图形,它们都具有上面所述的“自相似性”。如云 彩的边界;山峰的轮廓;奇形怪状的海岸线;蜿蜒曲折的河流;材料的无规则裂 缝,等等。这些变化无穷的曲线,虽然处处连续,但可能处处不可导。因此“分 形几何”自产生起,就得到了数学家们普遍的关注,很快就发展为一门有着广泛 应用前景的新的学科。 通过这个例子,同学们可以了解到数学学科的发展规律,认识到一个反例如 何促成一门新学科的产生。希望同学们在今后的学习中,重视对反例的探索。 注意点 (1)在 Weierstrass 反例的证明中,注意 的符号的选取是证明的关键。这样的 符号选取保证了当 hm n = L m −1,,2,1,0 时, n + hx m )(10 与 10n x 或者同时属于 ] 2 1 ,[ kk + ,或者同时属于 ]1, 2 1 [ kk ++ ,从而有 m m h −+ xfhxf )()( ∑ − = ϕ−+ϕ = 1 0 10 )10())(10( m n m n n m n h hx x = ∑ 。 − = ± 1 0 1 m n (2)在用电子课件演示 Weierstrass 反例的几何性状时,应强调 Weierstrass 函数 的局部与整体性质上的相似性,从而使学生对“分形”有一个初步的感性认识

点击下载完整版文档(PDF)VIP每日下载上限内不扣除下载券和下载次数;
按次数下载不扣除下载券;
24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
已到末页,全文结束
相关文档

关于我们|帮助中心|下载说明|相关软件|意见反馈|联系我们

Copyright © 2008-现在 cucdc.com 高等教育资讯网 版权所有