复旦大学2005~2006学年第一学期期末考试试卷 答案 1.(本题满分40分,每小题8分) 2=0 (3)y-=e“为极大值。 (4)曲线在(0,1上为上凸,在[+∞)上为下凸,(1,-7)为拐点。 (5) C。 2.(本题满分15分)∫在x=0点连续且可微,f(0)=0,f(0)=1。在其它点 不连续,因此也不可微。 3.(本题满分10分)不一致连续。 4.(本题满分10分)e2。 5.(本题满分15分)x-(1+e)n(1+e+C。 6.(本题满分10分)证明:要证的不等式1+10(x<0),且g(0)=0,所以 g(x)=x+ln(1-x)<0(x<0) 因此 0(x<0)。 因为limf(x)=0,因此当x<0时成立 f(x) -(-x)+1<lmf(x)=0
复旦大学 2005~2006 学年第一学期期末考试试卷 答案 1. (本题满分 40 分,每小题 8 分) (1) yx =−+ 0222 。 (2) 2 1 。 (3) e ex ey 1 = = 为极大值。 (4)曲线在 上为上凸,在 ]1,0( +∞),1[ 上为下凸, − )7,1( 为拐点。 (5) C x x x + − −− 1 ln 1 。 2.(本题满分 15 分) 在 点连续且可微, f x = 0 f = 0)0( , f ′ = 1)0( 。在其它点 不连续,因此也不可微。 3.(本题满分 10 分)不一致连续。 4.(本题满分 10 分) 。2 e 5.(本题满分 15 分) Ceex 。 x x +++− − )1ln()1( 6.(本题满分 10 分)证明:要证的不等式 1 )1ln( 11 − ′ −= x xg ( x + − ′ −= x xx xf ( x < 0)。 因为 0)(lim ,因此当 时成立 0 = −→ xf x x < 0 <+−− − = 1)1ln( )1ln( )( x x x xf 0)(lim0 = −→ xf x