例3.求反三角函数及指数函数的导数. 解:I)设y=arcsinx,则x=siny,y∈(- 2’2 ∴.Cosy>0,则 (arcsinx)= (sin y)' 'cosy 1-sin2y 1-2 利用 π (arccosx)'=- arccosx= arcsinx /1-x2 2 类似可求得 (arctanx)'= 1+r2, (arccotx)'=- 1+x2 Q9oo⑧例3. 求反三角函数及指数函数的导数. 解: 1) 设 则 ) , 2 , 2 ( y − (sin y) cos y 1 = y 2 1 sin 1 − = 类似可求得 x arcsin x 2 arccos = − 利用 cos y 0 , 则 机动 目录 上页 下页 返回 结束