正在加载图片...
206 工程科学学报,第44卷.第2期 temperature steam.Nuc/Mater.2018,511:496 irradiated MA957.Microsc Microanal,2012,18(S2):1418 [20]Lim J,Hwang I S,Kim J H.Design of alumina forming FeCrAl [38]Zilnyk K D,Pradeep K G,Choi P,et al.Long-term thermal steels for lead or lead-bismuth cooled fast reactors.J Nucl Mater, stability of nanoclusters in ODS-Eurofer steel:An atom probe 2013,441(1-3):650 tomography study.J Nuc/Mater,2017,492:142 [21]Pint B A,Terrani K A,Yamamoto Y,et al.Material selection for [39]Renzetti R A,Sandim H R Z,Sandim M J R,et al.Annealing accident tolerant fuel cladding.Metall Mater Trans E,2015,2(3): effects on microstructure and coercive field of ferritic-martensitic 190 ODS Eurofer steel.Mater Sci Eng 4,2011,528(3):1442 [22]Pint B A,Garratt-Reed A J,Hobbs L W.The reactive element [40]Aydogan E,El-Atwani O,Takajo S.et al.High temperature effect in commercial ODS FeCrAl alloys.Mater High Temp,1995, microstructural stability and recrystallization mechanisms in 13(1):3 14YWT alloys.Acta Mater,2018,148:467 [23]Pint B A.Experimental observations in support of the dynamic- [41]Klimiankou M,Lindau R,Moslang A.HRTEM Study of yttrium segregation theory to explain the reactive-element effect.Oxid oxide particles in ODS steels for fusion reactor application.Cryst MeL,1996,45(1-2):1 Grow1h,2003,249(1-2):381 [24]Whittenberger J D.Tensile and creep properties of the [42]Lescoat M L,Ribis J,Gentils A,et al.In situ TEM study of the experimental oxide dispersion strengthened iron-base sheet alloy stability of nano-oxides in ODS steels under ion-irradiation.J Nucl MA-956E at 1365 K.Metall Trans A,1978,9(1):101 Mater,2012,428(1-3):176 [25]Marriott J B,Merz M,Nihoul J,et al.High Temperature Alloys, [43]Klimiankou M,Lindau R,Moslang A.Energy-filtered TEM Their Exploitable Potentia.London and New York:Elsevier imaging and EELS study of ODS particles and Argon-filled Applied Science,1987 cavities in ferritic-martensitic steels.Micron,2005,36(1):1 [26]Ohnuma,M,J Suzuki,S Ohtsuka,et al.A New Method for the [44]Klimiankou M,Lindau R,Moslang A.TEM characterization of quantitative analysis of the scale and composition of nanosized structure and composition of nanosized ODS particles in reduced oxide in 9Cr-ODS Steel.Acta Materialia,2009,57(18):5571 activation ferritic-martensitic steels.J Nucl Mater,2004,329-333: [27]Mukhopadhyay D K,Froes F H,Gelles D S.Development of 347 oxide dispersion strengthened ferritic steels for fusion.J Nucl [45]Alinger M J,Odette G R,Hoelzer D T.The development and Mater,.1998,258-263:1209 stability of Y-Ti-O nanoclusters in mechanically alloyed Fe-Cr [28]Romanoski G R,Snead LL.Klueh RL,et al.Development of an based ferritic alloys.J Nucl Mater,2004,329-333:382 oxide dispersion strengthened,reduced-activation steel for fusion [46]Lu C Y,Lu Z,Xie R,et al.Effect of Y/Ti atomic ratio on energy.J Nucl Mater,2000,283-287:642 microstructure of oxide dispersion strengthened alloys.Mater [29]Klueh R L,Shingledecker J P,Swindeman R W,et al.Oxide Charac4,2017,134:35 dispersion-strengthened steels:A comparison of some commercial [47]Sakasegawa H,Chaffron L,Legendre F,et al.Correlation between and experimental alloys./Nuc/Mater,2005,341(2-3):103 chemical composition and size of very small oxide particles in the [30]Yamamoto T,Odette G R,Miao P,et al.The transport and fate of MA957 ODS ferritic alloy.JNuc/Mater,2009,384(2):115 helium in nanostructured ferritic alloys at fusion relevant He/dpa [48]Li Z Y,Lu Z,Xie R,et al.Effects of Y2O,La,O:and CeO, ratios and dpa rates.J Nucl Mater,2007,367-370:399 additions on microstructure and mechanical properties of 14Cr- [31]Pint B A.Terrani K A.Brady M P,et al.High temperature ODS ferrite alloys produced by spark plasma sintering.Fusion Eng oxidation of fuel cladding candidate materials in steam-hydrogen Des,2017,121:159 environments.Nuc/Mater,2013,440(1-3):420 [49]Hirata,A.,T.Fujita,C.T.Liu,et al.Characterization of oxide [32]Was G S,Petti D,Ukai S,et al.Materials for future nuclear energy nanoprecipitates in an oxide dispersion strengthened 14YWT steel systems.J Nucl Mater,2019,527:151837 using aberration-corrected STEM.Acta Mater,2012,60(16):5686 [33]Ukai S.Fujiwara M.Perspective of ODS alloys application in [50]McClintock D A,Sokolov M A,Hoelzer D T,et al.Mechanical nuclear environments.J Nuc/Mater,2002,307-311:749 properties of irradiated ODS-EUROFER and nanocluster [34]Ukai S,Harada M,Okada H,et al.Alloying design of oxide strengthened 14YWT.J Nucl Mater,2009,392(2):353 dispersion strengthened ferritic steel for long life FBRs core [51]Czyrska-Filemonowicz A,Szot K,Wasilkowska A,et al. materials.J Nucl Mater,1993,204:65 Microscopy (AFM,TEM,SEM)studies of oxide scale formation [35]Zhang L,Ukai S,Hoshino T,et al.Y2O evolution and dispersion on FeCrAl based ODS alloys.Solid State lon,1999,117(1-2):13 refinement in Co-base ODS alloys.Acta Mater,2009,57(12): [52]Yamamoto Y,Pint B A,Terrani K A,et al.Development and 3671 property evaluation of nuclear grade wrought FeCrAl fuel cladding [36]Miller M K,Hoelzer D T,Kenik E A,et al.Nanometer scale for light water reactors./Nuc/Mater,2015,467:703 precipitation in ferritic MA/ODS alloy MA957.J Nucl Mater, [53]Dou P,Kimura A,Okuda T,et al.Polymorphic and coherency 2004.329.333:338 transition of Y-Al complex oxide particles with extrusion [37]Bailey N,Hosemann P,Sterger E,et al.Initial APT analysis of temperature in an Al-alloyed high-Cr oxide dispersiontemperature steam. J Nucl Mater. 2018, 511: 496 Lim J, Hwang I S, Kim J H. Design of alumina forming FeCrAl steels for lead or lead-bismuth cooled fast reactors. J Nucl Mater, 2013, 441(1-3): 650 [20] Pint B A, Terrani K A, Yamamoto Y, et al. Material selection for accident tolerant fuel cladding. Metall Mater Trans E, 2015, 2(3): 190 [21] Pint B A, Garratt-Reed A J, Hobbs L W. The reactive element effect in commercial ODS FeCrAI alloys. Mater High Temp, 1995, 13(1): 3 [22] Pint B A. Experimental observations in support of the dynamic￾segregation theory to explain the reactive-element effect. Oxid Met, 1996, 45(1-2): 1 [23] Whittenberger J D. Tensile and creep properties of the experimental oxide dispersion strengthened iron-base sheet alloy MA-956E at 1365 K. Metall Trans A, 1978, 9(1): 101 [24] Marriott J B, Merz M, Nihoul J, et al. High Temperature Alloys, Their Exploitable Potentia. London and New York: Elsevier Applied Science, 1987 [25] Ohnuma, M, J Suzuki, S Ohtsuka, et al. A New Method for the quantitative analysis of the scale and composition of nanosized oxide in 9Cr-ODS Steel. Acta Materialia, 2009, 57(18): 5571 [26] Mukhopadhyay D K, Froes F H, Gelles D S. Development of oxide dispersion strengthened ferritic steels for fusion. J Nucl Mater, 1998, 258-263: 1209 [27] Romanoski G R, Snead L L, Klueh R L, et al. Development of an oxide dispersion strengthened, reduced-activation steel for fusion energy. J Nucl Mater, 2000, 283-287: 642 [28] Klueh R L, Shingledecker J P, Swindeman R W, et al. Oxide dispersion-strengthened steels: A comparison of some commercial and experimental alloys. J Nucl Mater, 2005, 341(2-3): 103 [29] Yamamoto T, Odette G R, Miao P, et al. The transport and fate of helium in nanostructured ferritic alloys at fusion relevant He/dpa ratios and dpa rates. J Nucl Mater, 2007, 367-370: 399 [30] Pint B A, Terrani K A, Brady M P, et al. High temperature oxidation of fuel cladding candidate materials in steam-hydrogen environments. J Nucl Mater, 2013, 440(1-3): 420 [31] Was G S, Petti D, Ukai S, et al. Materials for future nuclear energy systems. J Nucl Mater, 2019, 527: 151837 [32] Ukai S, Fujiwara M. Perspective of ODS alloys application in nuclear environments. J Nucl Mater, 2002, 307-311: 749 [33] Ukai S, Harada M, Okada H, et al. Alloying design of oxide dispersion strengthened ferritic steel for long life FBRs core materials. J Nucl Mater, 1993, 204: 65 [34] Zhang L, Ukai S, Hoshino T, et al. Y2O3 evolution and dispersion refinement in Co-base ODS alloys. Acta Mater, 2009, 57(12): 3671 [35] Miller M K, Hoelzer D T, Kenik E A, et al. Nanometer scale precipitation in ferritic MA/ODS alloy MA957. J Nucl Mater, 2004, 329-333: 338 [36] [37] Bailey N, Hosemann P, Sterger E, et al. Initial APT analysis of irradiated MA957. Microsc Microanal, 2012, 18(S2): 1418 Zilnyk K D, Pradeep K G, Choi P, et al. Long-term thermal stability of nanoclusters in ODS-Eurofer steel: An atom probe tomography study. J Nucl Mater, 2017, 492: 142 [38] Renzetti R A, Sandim H R Z, Sandim M J R, et al. Annealing effects on microstructure and coercive field of ferritic-martensitic ODS Eurofer steel. Mater Sci Eng A, 2011, 528(3): 1442 [39] Aydogan E, El-Atwani O, Takajo S, et al. High temperature microstructural stability and recrystallization mechanisms in 14YWT alloys. Acta Mater, 2018, 148: 467 [40] Klimiankou M, Lindau R, Möslang A. HRTEM Study of yttrium oxide particles in ODS steels for fusion reactor application. J Cryst Growth, 2003, 249(1-2): 381 [41] Lescoat M L, Ribis J, Gentils A, et al. In situ TEM study of the stability of nano-oxides in ODS steels under ion-irradiation. J Nucl Mater, 2012, 428(1-3): 176 [42] Klimiankou M, Lindau R, Möslang A. Energy-filtered TEM imaging and EELS study of ODS particles and Argon-filled cavities in ferritic-martensitic steels. Micron, 2005, 36(1): 1 [43] Klimiankou M, Lindau R, Möslang A. TEM characterization of structure and composition of nanosized ODS particles in reduced activation ferritic-martensitic steels. J Nucl Mater, 2004, 329-333: 347 [44] Alinger M J, Odette G R, Hoelzer D T. The development and stability of Y-Ti-O nanoclusters in mechanically alloyed Fe-Cr based ferritic alloys. J Nucl Mater, 2004, 329-333: 382 [45] Lu C Y, Lu Z, Xie R, et al. Effect of Y/Ti atomic ratio on microstructure of oxide dispersion strengthened alloys. Mater Charact, 2017, 134: 35 [46] Sakasegawa H, Chaffron L, Legendre F, et al. Correlation between chemical composition and size of very small oxide particles in the MA957 ODS ferritic alloy. J Nucl Mater, 2009, 384(2): 115 [47] Li Z Y, Lu Z, Xie R, et al. Effects of Y2O3 , La2O3 and CeO2 additions on microstructure and mechanical properties of 14Cr￾ODS ferrite alloys produced by spark plasma sintering. Fusion Eng Des, 2017, 121: 159 [48] Hirata, A., T. Fujita, C. T. Liu, et al. Characterization of oxide nanoprecipitates in an oxide dispersion strengthened 14YWT steel using aberration-corrected STEM. Acta Mater, 2012, 60(16): 5686 [49] McClintock D A, Sokolov M A, Hoelzer D T, et al. Mechanical properties of irradiated ODS-EUROFER and nanocluster strengthened 14YWT. J Nucl Mater, 2009, 392(2): 353 [50] Czyrska-Filemonowicz A, Szot K, Wasilkowska A, et al. Microscopy (AFM, TEM, SEM) studies of oxide scale formation on FeCrAl based ODS alloys. Solid State Ion, 1999, 117(1-2): 13 [51] Yamamoto Y, Pint B A, Terrani K A, et al. Development and property evaluation of nuclear grade wrought FeCrAl fuel cladding for light water reactors. J Nucl Mater, 2015, 467: 703 [52] Dou P, Kimura A, Okuda T, et al. Polymorphic and coherency transition of Y−Al complex oxide particles with extrusion temperature in an Al-alloyed high-Cr oxide dispersion [53] · 206 · 工程科学学报,第 44 卷,第 2 期
<<向上翻页向下翻页>>
©2008-现在 cucdc.com 高等教育资讯网 版权所有