正在加载图片...
贾皓东等:高强度耐腐蚀ODS-FeCrAl合金微观结构、力学性能研究进展 205· 表1图12中各样品弥散颗粒统计结果及应力國值计算值剧 [4] Agency I E.Technology Roadmap:Nuclear Energy.Paris:OECD Publishing,2010 Table 1 The statistical results of the dispersed particles of each sample and calculated value of the stress threshold in Fig.1 [5] Duysen J C,Bellefon G M.60th Anniversary of electricity production from light water reactors:Historical review of the Sample m I/m r/m D/m du/MPa contribution of materials science to the safety of the pressure YAI 1.48×1071.26×1074.40×1098.31×109 97-132 vessel.JNucl Mater,2017,484:209 specimen YTi [6] Azevedo C R F.Selection of fuel cladding material for nuclear 9.30×108.21×104.70×108.54×109 156-212 specimen fission reactors.Eng Fail Anal,2011,18(8):1943 YZr 1.02×1078.96×104.90×108.94×109145-195 [7] specimen Xu S,Chen L Z,Cao S G.et al.Research progress on Note:-Inter-particle distance;/-Center-particle distance;r- microstructure design and control of ODS steels applied to Average particle radius;D-Harmonic parameter;o-Threshold stress of dislocation creep. advanced nuclear energy systems.Mater Rep,2019,33(1):78 (徐帅,陈灵芝,曹书光,等.先进核能系统用ODS钢的显微组织 4结语与展望 设计与调控研究进展.材料导报,2019,33(1):78) [8] Odette G R,Alinger M J,Wirth B D.Recent developments in 与传统的FeCrAl合金相比,ODS-FeCrAl合金 irradiation-resistant steels.Annu Rey Mater Res,2008,38(1):471 不但保持了优异的抗高温氧化性能,而且具有更 [9] Zinkle S J,Snead LL.Designing radiation resistance in materials 优异的高温强度和抗辐照性能,因而在2011年福 for fusion energy.Annu Rey Mater Res,2014,44(1):241 岛核事故之后作为ATF系统包壳材料的重要候选 [10]Ukai S,Ohtsuka S,Kaito T,et al.Oxide dispersion- 材料,成为研究热点.ODS-FeCrAl合金表面形成 strengthened/ferrite-martensite steels as core materials for 的氧化铝保护膜在液态金属中亦有良好的抗腐蚀 Generation IV nuclear reactors /In:Yvon P,ed.Structural Materials for Generation IV Nuclear Reactors.Amsterdam: 性能,使其亦有希望应用于第四代核能系统中 Woodhead Publishing,2017.357 A1的引入虽然解决了ODS合金的抗腐蚀性 [11]Pint BA.Dryepondt S,Unocic K A,et al.Development of ODS 问题,却也导致了内部弥散体系的变化,这种微观 FeCrAl for compatibility in fusion and fission energy applications. 结构上的变化很容易导致ODS-FeCrAl合金的高 J0M2014,66(12):2458 温强度与蠕变性能较不添加铝的ODS-FeCr合金 [12] Cheng T,Keiser J R,Brady M P,et al.Oxidation of fuel cladding 有一定程度的下降.而ODS合金优异的高温力学 candidate materials in steam environments at high temperature and 性能与辐照性能主要源于其内部特殊的氧化物弥 pressure.J Nuc/Mater,2012,427(1-3):396 [13]Gesmundo F,Niu Y.The internal oxidation of ternary alloys.V: 散结构的控制,所以在保持ODS-FeCrAl合金优异 The transition from internal to exteral oxidation of the most- 的抗腐蚀性的同时对其微观结构进行调控便是 reactive component under low oxidant pressures.Oxid Mer,2004, ODS-FeCrAl合金今后的研究重点.目前研究者们 62(5-6):375 通过成分优化与工艺优化都取得了初步的成果, [14]Chubb W,Alfant S,Bauer AA,et al.Constitution,metallurgy,and 对其中的相关机理还需进一步明了,对于弥散粒 oxidation resistance of iron-chromium-aluminum alloys [R/OL]. 子优化后的ODS-FeCrAl合金进行服役性能的系 Battelle Memorial Institute (1958-10-16)[2020-12-17].https://doi 统测试研究也是接下来的主要工作.而对性能优 org10.2172/4290548 [15]Zhang Z G,Niu Y,Zhang X J.Effect of third element Cr In 异的ODS-FeCrAl合金实现大批量制备与型材的 Fe-Cr-Al alloys.J Iron Steel Res,2007,19(7):46 加工更是今后其能否工程应用需要解决的难题. (张志刚,牛焱,张学军.铁-铬-铝合金中铬的第三组元作用.钢 铁研究学报,2007,19(7):46) 参考文献 [16]Regina J R,Dupont J N,Marder A R.The effect of chromium on [1]Zinkle S J.Advanced materials for fusion technology.Fusion Eng the weldability and microstructure of Fe-Cr-Al weld cladding. Des,2005,74(1-4):31 Welding,J2007,86:170 [2]Mansur L K,Rowcliffe A F,Nanstad R K,et al.Materials needs [17]Gussev M N,Field K G,Yamamoto Y.Design,properties,and for fusion,Generation IV fission reactors and spallation neutron weldability of advanced oxidation-resistant FeCrAl alloys.Mater sources-similarities and differences.Nuc/Mater,2004,329-333: Des,2017,129:227 166 [18]Stott F H,Wood G C,Stringer J.The influence of alloying [3]Wealer B,Bauer S,Hirschhausen C V,et al.Investing into third elements on the development and maintenance of protective scales. generation nuclear power plants -Review of recent trends and 0dMeL,1995,44(1-2):113 analysis of future investments using Monte Carlo Simulation. [19]Tang CC,Jianu A,Steinbrueck M,et al.Influence of composition Renewable Sustainable Energy Rev,2021,143:110836 and heating schedules on compatibility of FeCrAl alloys with high-4    结语与展望 与传统的 FeCrAl 合金相比,ODS−FeCrAl 合金 不但保持了优异的抗高温氧化性能,而且具有更 优异的高温强度和抗辐照性能,因而在 2011 年福 岛核事故之后作为 ATF 系统包壳材料的重要候选 材料,成为研究热点. ODS−FeCrAl 合金表面形成 的氧化铝保护膜在液态金属中亦有良好的抗腐蚀 性能,使其亦有希望应用于第四代核能系统中. Al 的引入虽然解决了 ODS 合金的抗腐蚀性 问题,却也导致了内部弥散体系的变化,这种微观 结构上的变化很容易导致 ODS−FeCrAl 合金的高 温强度与蠕变性能较不添加铝的 ODS−FeCr 合金 有一定程度的下降. 而 ODS 合金优异的高温力学 性能与辐照性能主要源于其内部特殊的氧化物弥 散结构的控制,所以在保持 ODS−FeCrAl 合金优异 的抗腐蚀性的同时对其微观结构进行调控便是 ODS−FeCrAl 合金今后的研究重点. 目前研究者们 通过成分优化与工艺优化都取得了初步的成果, 对其中的相关机理还需进一步明了,对于弥散粒 子优化后的 ODS−FeCrAl 合金进行服役性能的系 统测试研究也是接下来的主要工作. 而对性能优 异的 ODS−FeCrAl 合金实现大批量制备与型材的 加工更是今后其能否工程应用需要解决的难题. 参    考    文    献 Zinkle S J. Advanced materials for fusion technology. Fusion Eng Des, 2005, 74(1-4): 31 [1] Mansur L K, Rowcliffe A F, Nanstad R K, et al. Materials needs for fusion, Generation IV fission reactors and spallation neutron sources-similarities and differences. J Nucl Mater, 2004, 329-333: 166 [2] Wealer B, Bauer S, Hirschhausen C V, et al. Investing into third generation nuclear power plants - Review of recent trends and analysis of future investments using Monte Carlo Simulation. Renewable Sustainable Energy Rev, 2021, 143: 110836 [3] Agency I E. Technology Roadmap: Nuclear Energy. Paris: OECD Publishing, 2010 [4] Duysen J C, Bellefon G M. 60th Anniversary of electricity production from light water reactors: Historical review of the contribution of materials science to the safety of the pressure vessel. J Nucl Mater, 2017, 484: 209 [5] Azevedo C R F. Selection of fuel cladding material for nuclear fission reactors. Eng Fail Anal, 2011, 18(8): 1943 [6] Xu S, Chen L Z, Cao S G, et al. Research progress on microstructure design and control of ODS steels applied to advanced nuclear energy systems. Mater Rep, 2019, 33(1): 78 (徐帅, 陈灵芝, 曹书光, 等. 先进核能系统用ODS钢的显微组织 设计与调控研究进展. 材料导报, 2019, 33(1):78) [7] Odette G R, Alinger M J, Wirth B D. Recent developments in irradiation-resistant steels. Annu Rev Mater Res, 2008, 38(1): 471 [8] Zinkle S J, Snead L L. Designing radiation resistance in materials for fusion energy. Annu Rev Mater Res, 2014, 44(1): 241 [9] Ukai S, Ohtsuka S, Kaito T, et al. Oxide dispersion￾strengthened/ferrite-martensite steels as core materials for Generation IV nuclear reactors // In: Yvon P, ed. Structural Materials for Generation IV Nuclear Reactors. Amsterdam: Woodhead Publishing, 2017. 357 [10] Pint B A, Dryepondt S, Unocic K A, et al. Development of ODS FeCrAl for compatibility in fusion and fission energy applications. JOM, 2014, 66(12): 2458 [11] Cheng T, Keiser J R, Brady M P, et al. Oxidation of fuel cladding candidate materials in steam environments at high temperature and pressure. J Nucl Mater, 2012, 427(1-3): 396 [12] Gesmundo F, Niu Y. The internal oxidation of ternary alloys. V: The transition from internal to external oxidation of the most￾reactive component under low oxidant pressures. Oxid Met, 2004, 62(5-6): 375 [13] Chubb W, Alfant S, Bauer A A, et al. Constitution, metallurgy, and oxidation resistance of iron-chromium- aluminum alloys [R/OL]. Battelle Memorial Institute (1958-10-16) [2020-12-17]. https://doi. org/10.2172/4290548 [14] Zhang Z G, Niu Y, Zhang X J. Effect of third element Cr In Fe−Cr−Al alloys. J Iron Steel Res, 2007, 19(7): 46 (张志刚, 牛焱, 张学军. 铁−铬−铝合金中铬的第三组元作用. 钢 铁研究学报, 2007, 19(7):46) [15] Regina J R, Dupont J N, Marder A R. The effect of chromium on the weldability and microstructure of Fe−Cr−Al weld cladding. Welding J, 2007, 86: 170 [16] Gussev M N, Field K G, Yamamoto Y. Design, properties, and weldability of advanced oxidation-resistant FeCrAl alloys. Mater Des, 2017, 129: 227 [17] Stott F H, Wood G C, Stringer J. The influence of alloying elements on the development and maintenance of protective scales. Oxid Met, 1995, 44(1-2): 113 [18] Tang C C, Jianu A, Steinbrueck M, et al. Influence of composition and heating schedules on compatibility of FeCrAl alloys with high- [19] 表 1 图 12 中各样品弥散颗粒统计结果及应力阈值计算值[81] Table 1 The statistical results of the dispersed particles of each sample and calculated value of the stress threshold in Fig. 12[81] Sample λ/m Is /m rs /m D/m σth/MPa YAl specimen 1.48×10−7 1.26×10−7 4.40×10−9 8.31×10−9 97−132 YTi specimen 9.30×10−8 8.21×10−8 4.70×10−9 8.54×10−9 156−212 YZr specimen 1.02×10−7 8.96×10−8 4.90×10−9 8.94×10−9 145−195 Note: λ—Inter-particle distance; Is—Center-particle distance; rs— Average particle radius; D—Harmonic parameter; σth—Threshold stress of dislocation creep. 贾皓东等: 高强度耐腐蚀 ODS−FeCrAl 合金微观结构、力学性能研究进展 · 205 ·
<<向上翻页向下翻页>>
©2008-现在 cucdc.com 高等教育资讯网 版权所有