4.计算下列行列式: 1352 a12 (1)423 (2) 09 0 -124 0 -2 1 0 0 0 0 (3) 03 2 -1 (3) 0 0 02 4-10 -3 0 a 12 -6 a a 1 0 0 0 a b -1b 1 0 a (5) 0 1 (6) c b a 0 0 0 -1 a b a 1+x 1 1 1 1 1 (7) 1-x 1 11+y 1 1 1 1-川 解:(1)-69(2)-a142241 (3)0(4)a14a202a41 (5)abcd+ab+cd+ad+1 (6)b(b2-4a2)(7)x'y2 5.证明: la? ab b2 (1)2aa+b2b=(a-b) 111 ax+by ay+bz az+bx x y (2)ay+bz az+bx ax+by =(a+b)y =x az+bx ax+by ay+bz x y a2(a+1)2(a+2)2(a+3) (3) 62(b+1)2(b+2)2(b+3) c2(c+1)2(c+2)}2(c+3) =0 d2(d+1)2(d+2)2(d+3)2-2- 4.计算下列行列式: (1) 3 5 2 4 2 3 −1 2 4 (2) 11 12 13 21 22 31 0 0 0 a a a a a a (3) 1 2 1 0 0 3 2 1 4 1 0 3 1 2 6 3 − − − − − − (3) 14 23 24 32 33 34 41 42 43 44 0 0 0 0 0 0 a a a a a a a a a a (5) 1 0 0 1 1 0 0 1 1 0 0 1 a b c d − − − (6) 0 0 0 0 a b a a a b b a a a b a (7) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 x x y y + − + − 解:(1)-69 (2) −a a a 13 22 31 (3)0 (4) a a a a 14 23 32 41 (5) abcd ab cd ad + + + +1 (6) 2 2 2 b b a ( 4 ) − (7) 2 2 x y 5.证明: (1) 2 2 3 2 2 ( ) 1 1 1 a ab b a a b b a b + = − (2) 3 3 ( ) ax by ay bz az bx x y z ay bz az bx ax by a b y z x az bx ax by ay bz z x y + + + + + + = + + + + (3) 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 ( 1) ( 2) ( 3) ( 1) ( 2) ( 3) 0 ( 1) ( 2) ( 3) ( 1) ( 2) ( 3) a a a a b b b b c c c c d d d d + + + + + + = + + + + + +