k B [n(1+n 取δ=2,则 EXL-EX 2+6 n(1+m)2 (n+1)(2n+1) n>>0 即李雅普诺夫定理的条件成立,故对于{Xk}李雅普诺夫定理成 DXk=EX2=(-k)2·+(ka)2 2,2a ∑DX 2+6 2+61 +612 a(2+5) 2 ElX,-EX ∑EX 3k=1 因为lim lim(a+1) 呈1.(=(x+1x=1 n→ana+1m→o a+1 +B:2x,m2a2+6)+1 所以lim 2a+1 2a+ lim -2,(2a+1) a(2+δ)+1 4=0:故对于所给的{x李雅普诺夫定理成 4.解以x(k=12.16)表示第k只电器的使用寿命则E(x)=100D(x)=100x=x 即x表示这16只电器的使用寿命之和据独立同分布的中心极限定理有 >1920=¥-16×1001920-16×10011-(08)=1-0.7881=0219 5.解:以表示100根木柱中长度小于3米的根树,则X是一个随机变量,由题1 2 1 1 2 2 2 1 1 1 2 1 2 [ (1 )] n n n k k k k B n n δ δ δ δ δ + + + + + = = = = + ∑ ∑ 取δ = 2 ,则 ∑ = + + − n k k k n E X EX B 1 2 2 1 δ δ ∑ + = = n k k n n 1 2 2 [ (1 )] 4 ( 1)(2 1) 0 [ (1 )] 6 4 2 ⋅ + + ⎯⎯ →⎯ + = n→∞ n n n n n 即李雅普诺夫定理的条件成立,故对于{Xk }李雅普诺夫定理成立。 (2) 0 3 1 ( ) 3 1 = (− )⋅ + ⋅ = α α EX k k k 2 α 2 α 2 2α 3 2 3 1 ( ) 3 1 DX k = EX k = (−k ) ⋅ + k ⋅ = k ∑ ∑ = = = = n k n k n k B DX k 1 2 1 2 3 2 α , (2 ) 2 2 2 3 2 3 1 3 1 α δ δ α δ δ α + + + + E Xk = − k ⋅ + k ⋅ = k ∑ = + + − n k k k n E X EX B 1 2 2 1 δ δ = ∑ = + + n k k n E X B 1 2 2 1 δ δ 2 1 1 2 1 (2 ) ] 3 2 [ ) 3 2 ( δ α α δ + = = + ∑ ∑ = n k n k k k 因为 x dx n k n n k n n k n k n ∑ ∫ ∑ = + ⋅ = + + →∞ = + = →∞ 1 0 1 1 1 ( ) ( 1) 1 lim ( 1) 1 lim α α α α α α α = 1 所以 ∑ = + →∞ + − n k k k n n E X EX B 1 2 2 1 lim δ δ 2 1 2 1 (2 ) 1 2 ) 2 1 ( (2 ) 1 ) 3 2 lim ( δ α α δ δ α α δ + + + + − →∞ + + + = n n n 0 1 (2 ) 1 (2 1) ) 3 2 lim ( 2 2 1 2 ⋅ = + + + = ⋅ + − →∞ δ δ δ α δ α n n ;故对于所给的{Xk }李雅普诺夫定理成立。 4. 解:以 Xk (k = 1,2,...,16) 表示第 k 只电器的使用寿命,则 ( ) = 100, ( ) = 10000, E Xk D Xk 记 , 即 ∑ = = 16 k 1 X Xk X 表示这 16 只电器的使用寿命之和,据独立同分布的中心极限定理有: } 1 (0.8) 1 0.7881 0.2119 16 10000 1920 16 100 16 10000 16 100 { 1920} { ≈ − Φ = − = × − × × − × ; = ; X P X P 5. 解:以 X 表示 100 根木柱中长度小于 3 米的根树,则 X 是一个随机变量,由题