正在加载图片...
器位置的要求,但各个肽链的大小和它们的疏水基团的性质极不相同,因此, 这些疏水基团和苦味感觉器主要疏水位置相互作用的能力也大不相同。已证 明肽类的苦味可以通过计算疏水值来预测。一种蛋白质参与疏水缔合的能力 与各个非极性氨基酸侧链的疏水贡献总和有关,这些相互作用主要对蛋白质 伸展的自由能产生影响。因此,根据△G=∑△g的关系,用下述方程式 Q=∑△g/n 可计算出蛋白质子平均疏水值,式中△g表示每种氨基酸侧链的疏水贡献,n 是氨基酸残基数。各个氨基酸的△g值按溶解度数据测定得到,其结果列于表 9-1。Q值大于1400的肽可能有苦味,低于1300的无苦味。肽的分子量也会 影响产生苦味的能力,只有那些分子量低于6000的肽类才可能有苦味,而分 子量大于这个数值的肽由于几何体积大,显然不能接近感受器位置。 表9-1各种氢基酸的计算△g值 氨基酸g值(Jmol)氨基酸g值 氨基酸 甘氨酸 精氨酸30526脯氨酸10,955.8 丝氨酸 167.3 丙氨酸30526苯丙氨酸11,081.2 苏氨酸 18399 蛋氨酸 36.1酪氨酸12,001.2 组氨酸 2090.8 赖氨酸 24异亮氨酸12,4194 天冬氨酸 缬氨酸7066.9色氨酸12,5448 谷氨酸 22999 亮氨酸10,119.5 图9-4表明as1酪蛋白在残基144~145和残基150~151之间断裂得到 的肽,其计算Q值为2290,这种肽非常苦。从αs1酪蛋白得到强疏水性肽, 是成熟干酪中产生苦味的原因。曾有人用这种方法预测了脂类衍生物和糖类 的苦味 ①9.2c N-CH N CHCH H2 N-CH N-CH CH2 CH CH HO-C 图9-4强非极性αsl1酪蛋白衍生物的苦味肽 羟基化脂肪酸,特别是一些羟基衍生物常常带苦味,可以用分子中的碳- 7 - 器位置的要求,但各个肽链的大小和它们的疏水基团的性质极不相同,因此, 这些疏水基团和苦味感觉器主要疏水位置相互作用的能力也大不相同。已证 明肽类的苦味可以通过计算疏水值来预测。一种蛋白质参与疏水缔合的能力 与各个非极性氨基酸侧链的疏水贡献总和有关,这些相互作用主要对蛋白质 伸展的自由能产生影响。因此,根据△G=∑△g 的关系,用下述方程式 Q=∑△g/n 可计算出蛋白质子平均疏水值,式 每种氨基酸侧链的疏水贡献,n 氨基酸 △g值(J m ) 氨基酸 △g 值 ( 中△g 表示 是氨基酸残基数。各个氨基酸的△g 值按溶解度数据测定得到,其结果列于表 9-1。Q 值大于 1400 的肽可能有苦味,低于 1300 的无苦味。肽的分子量也会 影响产生苦味的能力,只有那些分子量低于 6000 的肽类才可能有苦味,而分 子量大于这个数值的肽由于几何体积大,显然不能接近感受器位置。 表 9-1 各种氢基酸的计算△g 值 ol -1 ) 氨基酸 △g 值 (J mol -1 J mol -1) 甘 氨 酸 0 精 氨 酸 3052.6 脯 氨 酸 10,955.8 丝 氨 酸 16 1 7.3 丙 氨 酸 3052.6 苯丙氨酸 11,081.2 苏 氨 酸 1839.9 蛋 氨 酸 5436.1 酪 氨 酸 12,001.2 组 氨 酸 2090.8 赖 氨 酸 6272.4 异亮氨酸 12,419.4 天冬氨酸 2258.1 缬 氨 酸 7066.9 色 氨 酸 12,544.8 谷 氨 酸 2299.9 亮 氨 酸 0,119.5 图 9-4 表明 αs1 酪蛋白在残基 144~145 和残基 150~151 之间断裂得到 基化脂肪酸,特别是一些羟基衍生物常常带苦味,可以用分子中的碳 的肽,其计算 Q 值为 2290,这种肽非常苦。从αs1 酪蛋白得到强疏水性肽, 是成熟干酪中产生苦味的原因。曾有人用这种方法预测了脂类衍生物和糖类 的苦味。 图 9-4 强非极性αS1 酪蛋白衍生物的苦味肽 羟 7
<<向上翻页向下翻页>>
©2008-现在 cucdc.com 高等教育资讯网 版权所有