由看我们例到 exp(k5+vy+k=ep(-ik与+iky+k) (11) 或是 exp(ikzL)=1. 12 这就要求 k=2,%=0h2… 同理,我们例到k,及k:可取的案许部为: =艺后-2m%=0,1,2 14 因看,这个体系单粒成态的全体由下式给出 Pmm)(,)=C xp(2五nr+ng+n) (15) 最后,我们由下式决定归一化常数C [%[Raaanle,u.r -n4f=we-i (16) 由看我们解例C=办=六定而当(,n2m)≠(a,2,)时,我们有 ar饭司 =0. (17) 因看,一组正交归一的单粒成态由下式给出 9mz,刘=市ep(径mt+ay+n%)) 1 (18) 3 0iwxv exp ikx L 2 + ikyy + ikzz = exp −ikx L 2 + ikyy + ikzz , (11) =R exp (ikxL) = 1. (12) Ia , kx = 2π L nx, nx = 0, ±1, ±2, · · · · · · (13) juwxv ky kz l.y<Tr ky = 2π L ny, kz = 2π L nz, ny, nz = 0, ±1, ±2, · · · · · · (14) ,iIg|qz`by1g0~Nd ϕ(nx,ny,nz)(x, y, z) = Cnx,ny,nz exp i 2π L (nxx + nyy + nzz) . (15) f4w0~Nf)#6[Y Cnx,ny,nz Z L/2 −L/2 Z L/2 −L/2 Z L/2 −L/2 dxdydz|ϕ(n1,n2,n3)(x, y, z)| 2 = Z L/2 −L/2 Z L/2 −L/2 Z L/2 −L/2 dxdydz|Cnx,ny,nz | 2 = |Cnx,ny,nz | 2L 3 = 1. (16) 0iwYx Cnx,ny,nz = √ 1 L3 = √ 1 V t (n1, n2, n3) 6= (ne1, ne2, ne3) Iw1 Z L/2 −L/2 Z L/2 −L/2 Z L/2 −L/2 dxdydz ϕ(n1,n2,n3)(x, y, z) ∗ ϕ(en1,en2,en3) (x, y, z) = 1 V Z L/2 −L/2 Z L/2 −L/2 Z L/2 −L/2 dxdydz exp (i(n1 − ne1)x + i(n2 − ne2)y + i(n3 − ne3)z) = 0. (17) ,i#eOR)#yqz`b0~Nd ϕ(n1,n2,n3)(x, y, z) = 1 √ V exp i 2π L (n1x + n2y + n3z) . (18) 3