In-ldx 1 In x)0(y+1)210 于是 x sinl In 所以 sinl In rotan(1+b)-arctan(1+a) Inx 1+(y+1) (2)n 1+asin d 2|2dx I-asin x sin x -y sin x y sin x d x d cot x tx ctan 所以 '2 I+ asin dx dy =丌 arcsin asin sinx 4.求下列函数的导数 (1)I(v)=e"dx (2)(y)=∫ (3)F()= sin(x+ 解(1)r0)=2y)-2”2-∫)xeh。 (2)I()=<cosy'-cospo I sin( xy)dx= 3cos y'-2 cos y (3)设g(x0)=∫sx2+y2-2),则 g(x)=2ox2+y2-17)+sm2x2+2x)+sm(2x2-2x), 所以 (x, t)dx+ 2tg(t, 1) 220x2+y2-)b+2m232∫ ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ + = 1 0 1 cos ln 1 1 dx x x y y ∫ ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ + ⎟ − ⎠ ⎞ ⎜ ⎝ ⎛ + = + 1 2 0 0 1 1 2 1 sin ln ( 1) 1 1 cos ln ( 1) 1 dx x x x y x y y y , 于是 ∫ ⎟ ⎠ ⎞ ⎜ ⎝ 1 ⎛ 0 1 sin ln dx x x y 2 1 ( 1) 1 + + = y , 所以 ∫ − ⎟ ⎠ ⎞ ⎜ ⎝ 1 ⎛ 0 ln 1 sin ln dx x x x x b a = + + = ∫ b a y dy 2 1 ( 1) arctan(1+ b) − arctan(1+ a)。 (2)∫ ∫ ∫ ∫ ∫ − = − = − + 2 0 0 2 2 2 0 0 2 2 2 0 1 sin 2 1 sin 2 1 sin sin 1 sin ln π π π y x dx dy y x dy dx x dx a x a x a a , ∫ − 2 0 2 2 1 sin π y x dx 0 2 2 2 2 0 2 2 1 cot arctan 1 1 cot 1 cot π π y x x y y d x − − = − + − = −∫ 2 2 1− y = π , 所以 = − = − + ∫ ∫ a y dy x dx a x a x 0 2 2 0 1 1 sin sin 1 sin ln π π π arcsina 。 4. 求下列函数的导数: (1) = ∫ − ; 2 2 ( ) y y x y I y e dx (2) ∫ = 2 cos ( ) y y dx x xy I y ; (3) ∫ ∫ 。 + − = + − x t x t t F(t) dx sin(x y t )dy 2 2 2 0 2 解(1) ′ = − − − − 。 5 3 ( ) 2 y y I y ye e ∫ − 2 2 2 y y x y x e dx (2) − − ′ = y y y I y 3 2 2cos cos ( ) ∫ 2 sin( ) y y xy dx= y y y 3 2 3cos − 2cos 。 (3)设 g(x,t) = ,则 ∫ + − + − x t x t sin(x y t )dy 2 2 2 ( , ) 2 cos( ) sin(2 2 ) sin(2 2 ) 2 2 2 2 2 g x t t x y t dy x xt x xt x t x t t = − + − + + + − ∫ + − , 所以 F′(t) ( , ) 2 ( , ) 2 0 2 g x t dx tg t t t = t + ∫ ∫ ∫ ∫ = − + − + + − 2 2 0 2 2 2 2 0 2 cos( ) 2 sin 2 cos 2 x t t x t t t dx x y t dy x xtdx 3