正在加载图片...
1404 工程科学学报.第41卷第11期 3结论 separation:Experimental investigation and theoretical analysis. Powder Technol,2019,343:270 (1)单矿物浮选试验表明.粗粒赤铁矿的可浮 [5]Wang L,Peng Y,Runge K,et al.A review of entrainment: 性较好,当油酸钠用量超过15mgL时,回收率 Mechanisms,contributing factors and modelling in flotation. 可达到90%以上;而细粒赤铁矿的浮选回收率、 Miner Eng,2015,70:77 浮选速率则较低,油酸钠用量为30mgL时,浮 [6] Subrahmanyam T V,Forssberg K S E.Fine particles processing: shear-flocculation and carrier flotation-a review.Int J Miner 选回收率仅为60%左右,通过常规浮选难以实现 Process,1990,30(3-4):265 有效回收 [7]Ni C.Bu X N.Xia W C.et al.Observing slime-coating of fine (2)粗粒对细粒赤铁矿浮选的影响研究表明, minerals on the lump coal surface using particle vision and 当粗-细赤铁矿中粗粒和细粒的质量近似相等时, measurement.Powder Technol,2018,339:434 粗粒的“自载体”效果最明显,浮选回收率也提高 [8]Miettinen T,Ralston J,Fornasiero D.The limits of fine particle 的最多:而当粗粒过量时,则会导致粗粒对细粒赤 flotation.Miner Eng,2010,23(5):420 [9]Li D,Yin W Z,Liu Q,et al.Interactions between fine and coarse 铁矿浮选的强化作用减弱 hematite particles in aqueous suspension and their implications for (3)光学显微镜分析和E-DLVO理论计算表 flotation.Miner Eng,2017,114:74 明,粗-细赤铁矿颗粒间的相互作用能要高于细粒 [10]Yao J,Yin W,Gong E.Depressing effect of fine hydrophobic 赤铁矿间的相互作用能,与细粒赤铁矿相比,粗-细 particles on magnesite reverse flotation.IntJ Miner Process,2016, 赤铁矿间更容易发生团聚,这也是粗粒能够强化 149:84 细粒赤铁矿浮选(自载体作用)的主要原因.而当 [11]Hu Y H,Qiu G Z,Luo L,et al.Carrier flotation of ultrafine 粗粒赤铁矿过量时,其“磨削、剪切”作用占主导, particle wolframite.Trans Nonferrous Met Soc China,1994,4(4): 导致粗粒的“自载体”效果减弱 10 [12]Forbes E.Shear,selective and temperature responsive flocculation: 参考文献 a comparison of fine particle flotation techniques.Int J Miner Process,2011,991-4):1 [1]Chen W.Technological process in processing low-grade fine- [13]Shibata J.Fuerstenau D W.Flocculation and flotation grained complicated refractory iron ores.Mer Mine,2010(5):55 characteristics of fine hematite with sodium oleate.IntJ Miner (陈雯.贫细杂雅选铁矿石选矿技术进展.金属矿山,2010(5): Proces3:,2003,72(1-4):25 55) [14]Li H,Liu M X,Liu Q.The effect of non-polar oil on fine hematite [2]Ren A J,Sun C Y,Zhu Y G.Depressing capability of modified flocculation and flotation using sodium oleate or hydroxamic acids starches in the reverse flotation of quartz from hematite with as a collector.Miner Eng,2018,119:105 cationic collectors.Chin J Eng,2017,39(12):1815 [15]Qiu G Z,Hu Y H,Wang D Z.Interaction of Particles and (任爱军,孙传光,朱阳戈.变性淀粉在赤铁矿阳离子反浮选脱 Flotation Techniques of Fine Particles.Changsha:Central South 硅中的抑制性能.工程科学学报,2017,39(12):1815) University of Technology Press,1993 [3]Yin W Z,Yang X S,Zhou D P,et al.Shear hydrophobic (邱冠周,胡岳华,王淀佐.颗粒间的相互作用和细粒浮选.长沙: flocculation and flotation of ultrafine Anshan hematite using 中南工业大学出版社,1993) sodium oleate.Trans Nonferrous Met Soc China,2011,21(3):652 [16]Yin WZ,Li D,Luo X M,et al.Effect and mechanism of siderite [4]Li W B,Zhou L B,Han Y X,et al.Effect of carboxymethyl starch on reverse flotation of hematite.Int J Miner Metall Mater,2016, on fine-grained hematite recovery by high-intensity magnetic 23(4):3733    结论 (1) 单矿物浮选试验表明,粗粒赤铁矿的可浮 性较好,当油酸钠用量超过 15 mg·L−1 时,回收率 可达到 90% 以上;而细粒赤铁矿的浮选回收率、 浮选速率则较低,油酸钠用量为 30 mg·L−1 时,浮 选回收率仅为 60% 左右,通过常规浮选难以实现 有效回收. (2) 粗粒对细粒赤铁矿浮选的影响研究表明, 当粗−细赤铁矿中粗粒和细粒的质量近似相等时, 粗粒的“自载体”效果最明显,浮选回收率也提高 的最多;而当粗粒过量时,则会导致粗粒对细粒赤 铁矿浮选的强化作用减弱. (3) 光学显微镜分析和 E-DLVO 理论计算表 明,粗-细赤铁矿颗粒间的相互作用能要高于细粒 赤铁矿间的相互作用能,与细粒赤铁矿相比,粗-细 赤铁矿间更容易发生团聚,这也是粗粒能够强化 细粒赤铁矿浮选(自载体作用)的主要原因. 而当 粗粒赤铁矿过量时,其“磨削、剪切”作用占主导, 导致粗粒的“自载体”效果减弱. 参    考    文    献 Chen  W.  Technological  process  in  processing  low-grade  fine￾grained complicated refractory iron ores. Met Mine, 2010(5): 55 (陈雯. 贫细杂难选铁矿石选矿技术进展. 金属矿山, 2010(5): 55 ) [1] Ren  A  J,  Sun  C  Y,  Zhu  Y  G.  Depressing  capability  of  modified starches  in  the  reverse  flotation  of  quartz  from  hematite  with cationic collectors. Chin J Eng, 2017, 39(12): 1815 (任爱军, 孙传尧, 朱阳戈. 变性淀粉在赤铁矿阳离子反浮选脱 硅中的抑制性能. 工程科学学报, 2017, 39(12):1815 ) [2] Yin  W  Z,  Yang  X  S,  Zhou  D  P,  et  al.  Shear  hydrophobic flocculation  and  flotation  of  ultrafine  Anshan  hematite  using sodium oleate. Trans Nonferrous Met Soc China, 2011, 21(3): 652 [3] Li W B, Zhou L B, Han Y X, et al. Effect of carboxymethyl starch on  fine-grained  hematite  recovery  by  high-intensity  magnetic [4] separation:  Experimental  investigation  and  theoretical  analysis. Powder Technol, 2019, 343: 270 Wang  L,  Peng  Y,  Runge  K,  et  al.  A  review  of  entrainment: Mechanisms,  contributing  factors  and  modelling  in  flotation. Miner Eng, 2015, 70: 77 [5] Subrahmanyam T V, Forssberg K S E. Fine particles processing: shear-flocculation  and  carrier  flotation-a  review. Int J Miner Process, 1990, 30(3-4): 265 [6] Ni  C,  Bu  X  N,  Xia  W  C,  et  al.  Observing  slime-coating  of  fine minerals  on  the  lump  coal  surface  using  particle  vision  and measurement. Powder Technol, 2018, 339: 434 [7] Miettinen  T,  Ralston  J,  Fornasiero  D.  The  limits  of  fine  particle flotation. Miner Eng, 2010, 23(5): 420 [8] Li D, Yin W Z, Liu Q, et al. Interactions between fine and coarse hematite particles in aqueous suspension and their implications for flotation. Miner Eng, 2017, 114: 74 [9] Yao  J,  Yin  W,  Gong  E.  Depressing  effect  of  fine  hydrophobic particles on magnesite reverse flotation. Int J Miner Process, 2016, 149: 84 [10] Hu  Y  H,  Qiu  G  Z,  Luo  L,  et  al.  Carrier  flotation  of  ultrafine particle wolframite. Trans Nonferrous Met Soc China, 1994, 4(4): 10 [11] Forbes E. Shear, selective and temperature responsive flocculation: a  comparison  of  fine  particle  flotation  techniques. Int J Miner Process, 2011, 99(1-4): 1 [12] Shibata  J,  Fuerstenau  D  W.  Flocculation  and  flotation characteristics  of  fine  hematite  with  sodium  oleate. Int J Miner Process, 2003, 72(1-4): 25 [13] Li H, Liu M X, Liu Q. The effect of non-polar oil on fine hematite flocculation and flotation using sodium oleate or hydroxamic acids as a collector. Miner Eng, 2018, 119: 105 [14] Qiu  G  Z,  Hu  Y  H,  Wang  D  Z. Interaction of Particles and Flotation Techniques of Fine Particles.  Changsha:  Central  South University of Technology Press, 1993 (邱冠周, 胡岳华, 王淀佐. 颗粒间的相互作用和细粒浮选. 长沙: 中南工业大学出版社, 1993) [15] Yin W Z, Li D, Luo X M, et al. Effect and mechanism of siderite on reverse flotation of hematite. Int J Miner Metall Mater, 2016, 23(4): 373 [16] · 1404 · 工程科学学报,第 41 卷,第 11 期
<<向上翻页
©2008-现在 cucdc.com 高等教育资讯网 版权所有