Methods of Mathematical Physics(2016. 1)Chapter 8 Series solutions of linear difference equations and some special functions YLMal@Phys. FDU 将(8.3)和(8.1)代入方程,我们得到 (3·2a1+ +(n+2)·(n+1)an,+o (84) (n+2)(n+1ln2+oan]r=0 如果使方程有非零解,全部系数应为零,因此 0 a1 3·2 5·4 a3=0, (n+2)(n+1kn2+o2an=0,即 (n+2Xn+1) (2k)2k-142(2A2k-1(2k-2)2k-3 (-)o2k (-1)a2 (2k) (2k+1)(2k)(2k+1)(2k)(2k-1)(2k-2) 1) (-1 (2k+1(2k2k-1(2k-2)-3.24=(2k+1)a y=a+a1-0,a12-0,ar3+…+ (-1 (2k) (2k 2 2k+Methods of Mathematical Physics (2016.11) Chapter 8 Series solutions of linear difference equations and some special functions YLMa@Phys.FDU 10 将(8.3)和(8.1)代入方程,我们得到 2 2 2 2 0 3 1 2 2 2 0 2 1 3 2 2 1 2 1 0. n n n n n n n a a a a t n n a a t n n a a t (8.4) 如果使方程有非零解,全部系数应为零,因此 2 1 0 0 2 a2 a , 即 0 2 0 2 2 2 1 2! a a a 3 2 1 0 2 a3 a , 即 1 2 1 2 3 3 2 3! a a a 4 3 2 0 2 a4 a , 即 0 4 2 2 4 4 3 4! a a a 5 4 3 0 2 a5 a , 即 1 4 3 2 5 5 4 5! a a a … … 2 1 0 2 n n an2 an ,即 n an n n a 2 1 2 2 0 2 0 2 2 4 4 2 2 2 2 2 ! 1 2 2 1 2 2 2 3 2 1 1 2 2 1 2 2 1 2 2 2 3 a k a k k k k a k k k k a k k a k k k k k k k 1 2 1 2 2 3 4 2 1 2 2 1 2 1 ! 1 2 1 2 2 1 2 2 3 2 1 2 1 2 2 1 2 2 1 2 2 a k a k k k k a k k k k a k k a k k k k k k k 2 2 2 2 2 3 2 2 1 0 1 0 1 0 1 2 2 2 2 2 2 3 2 1 0 1 0 0 2 3 2 2 2 1 0 0 1 1 2! 3! 2 ! 2 1 ! 1 1 1 2! 2 ! 3! 2 1 ! 1 1 2! 2 ! k k k k k k k k k k k k k k k k k k y a a t a t a t a t a t k k a t t a t t t k k a a t t t k 2 1 3 2 1 0 1 3! 2 1 ! k k k k t t k