正在加载图片...
§122r函数的基本性质 4 推论1对于正整数n 正是因为这个原因,函数又称为阶乘函数 性质3互余宗量定理 这个公式的证明见后面的第124节 推论2r(1/2)=√元 只要在上面的性质3中代入z=1/2,并且注意 r(1/2)>0(因为被积函数值恒为正)即可得到此结果 推论3r函数在全平面无零点 因为/sin丌2≠0,所以r(2)r(1-2)≠0.这 样,如果在z=20点有r(20)=0,则必有r(1-20) ∞,这只能发生在1-20=-n(亦即20=n+1) n=0,1,2,…时.但此时r(20)=r(n+1)=n!,与所 设矛盾.因此r函数在全平面无零点.口 图123中给出了r(x)(x为实数)的图形.它从实数 范围直观地表现出这个推论以及函数的奇点分布 图123自变量取实数时的r函数值 性质4倍乘公式 r(2) 2-1/2r(a)r(z+ 这个公式的证明也见12.4节 性质5T函数的渐近展开,即 Stirling公式:当|2→∞,|arga<丌时,有 1×122288225184023248832024× 1 1 1 lnr(2)~(2-)mz-2+7ln(2x)+ 在物理中更常用的结果是 In n! Nn InWu Chong-shi §12.2 Γ ☎✆➉❵❛❜❝ ✝ 4 ✞ ❞❡ 1 t✉①②✖ n ✬ Γ (n) = (n − 1)!. ① ✢ ❅★✣✤❢❅✬ Γ ✕✖❍✧★❣❤✕✖✵ ✞✟ 3 ✐❥❦✰ ✛✳ Γ (z) Γ (1 − z) = π sin πz . ✣✤❧ ➾✗❥ ❦❸➼❡ ✗ ✩ 12.4 ♠✵ ❞❡ 2 Γ (1/2) = √ π ✵ ♦▼ ❋ ④❡✗➈♥ 3 ✮❧✠ z = 1/2 ✬❵❛♦✇ Γ (1/2) >0 (❅★❪✥✕✖♣q★① ) ➶❤➂➏⑧➭÷✵ ❞❡ 3 Γ ✕✖❋❝❞❡■r ⑩✵ ✡ ❅★ π/sin πz 6= 0 ✬❑▲ Γ (z) Γ (1 − z) 6= 0 ✵ ✣ ❻✬➧ ÷ ❋ z = z0 ⑩ ❷ Γ (z0) = 0 ✬st❷ Γ (1 − z0) = ∞ ✵ ✣♦➫➠✉❋ 1 − z0 = −n (✈➶ z0 = n + 1) ✬ n = 0, 1, 2, · · · ❭✵û⑧❭ Γ (z0) = Γ (n + 1) = n! ✬✇❑ ①②③✵ ❅ ⑧ Γ ✕✖❋❝❞❡■r ⑩✵ ❹ 12.3 ✮④ ➟⑤ Γ(x)(x ★ ➙✖) ✗❹⑥✵ ❈➞ ➙✖ ⑦ ➥ð⑧⑨♠⑩ ➟ ✣✤❶❱▲❷ Γ ✕✖✗❸⑩ ✦❹ ✵ ❺ 12.3 ❺ ❻❼❽❾❿➀➁ Γ ➂ ❿➃ ✞✟ 4 ➄ ❤❧➾ Γ (2z) = 22z−1π −1/2Γ (z) Γ  z + 1 2  . ✣✤❧ ➾✗❥ ❦➇ ❸ 12.4 ♠✵ ✞✟ 5 Γ ✕✖✗➅➆õö✬ ➶ Stirling ❧ ➾➳❬ |z| → ∞ ✬ | arg z| < π ❭ ✬❷ Γ (z) ∼ z z−1/2 e −z √ 2π n 1 + 1 12z + 1 288z 2 − 139 51840z 3 − 571 2488320z 4 + · · ·o , ln Γ (z) ∼  z − 1 2  ln z − z + 1 2 ln(2π) + 1 12z − 1 360z 3 + 1 1260z 5 − 1 1680z 7 + · · · . ❋➇✳ ✮➈ ✙✚✗➭÷✢ ln n! ∼ n ln n − n.
<<向上翻页向下翻页>>
©2008-现在 cucdc.com 高等教育资讯网 版权所有