正在加载图片...
8122r函数的基本性质 性质1r(1)=1 直接在r函数的定义中代入z=1即可得到这个结果 性质2r(z+1)=zr(z) 证根据r函数的定义 T(2+1)=ett=dt t+e-t2t2-ldt =2/e-t2-dt=zr(2)口 对于这个结果可以从两个角度来理解 一是尽管在证明过程中用到了条件Rez>0.但由于r(2+1)和r(2)都在全平面解 析(z=0,-1,-2,…除外),因此,根据解析延拓原理,可以断定,这个递推关亲在 全平面均成立 另一方面,也可以直接通过递推关糸来完成『函数的解析延拓.这时,可将递推关糸 改写成 T(z) 上式左端的函数在半平面Rez>0上解析,右端的函数在半平面Rez>-1上解析 两者在公共区域Rez>0上相等;由此可见,I(z+1)/z就是右端的r(z)在区域 ez>-1上的解析延拓,而且,如果把延拓后得到的结果仍记为I(z),这就是说, 可以把 r(x)=-r(2+1),z≠0 看成是r(z)在区域Rez>1上的定义,而z=0点是r函数的一阶极点,resr(0)=1 ·重复上述步骤,还可以将函数延拓到区域Rez>-2 r(2) 2(2+1) r(2+2),2≠0,-1 2=-1也是函数的一阶极点,resr(-1)=-1 如此继续,就可以将『函数解析延拓到全平面,而z=0,-1,一2,…都是『函数的一 阶极点 resr(-n)=(=1)2Wu Chong-shi ￾✁✂✄ Γ ☎ ✆ ✝ 3 ✞ §12.2 Γ ✍✎✏✄☎✆✝ ✞✟ 1 Γ (1) = 1 ✵ ðñ❋ Γ ✕✖✗✛✜ ✮❧✠ z = 1 ➶❤➂➏✣✤➭÷✵ ✞✟ 2 Γ (z + 1) = zΓ (z) ✵ ✡ ☛☞ Γ ✕✖✗✛✜ Γ (z + 1) = Z ∞ 0 e −t t zdt = −e −t t z ∞ 0 + Z ∞ 0 e −t ztz−1 dt = z Z ∞ 0 e −t t z−1 dt = zΓ (z). ✌Ñ✍✎✏✑í ✒✓✔✎ ✕✖✗✘Ý ✵ • ëÙ✙ ✚Ú✛ ✜✢✣ ✤Ðå â✥✦ Re z > 0 ✵✧ ★Ñ Γ (z + 1) ✩ zΓ (z) ✪ ÚÛÜ ➷Ý Þ (z = 0, −1, −2, · · · ✫✬) ✬ßà✬✭✮ÝÞãä✯✘✬í ✒✰❒✬✍✎✱✲ ✳✴Ú ÛÜ ➷✵✶✷✵ • ✸ ëè ➷✬✹í ✒✺✻✼✢✱✲ ✳✴✗ ✽✶ Γ ✃❐➱ÝÞãä✵✍✾✬íê✱✲ ✳✴ ✿ ❀✶ Γ (z) = 1 z Γ (z + 1). ➴❁❂❃➱ ✃❐Ú❄Ü ➷ Re z > 0 ➴ÝÞ✬❅❃➱ ✃❐Ú❄Ü ➷ Re z > −1 ➴ÝÞ❆ ✔❇Ú❈❉ ❊❋ Re z > 0 ➴●❍❆★àí■✬ Γ (z + 1) /z ❏ Ù❅❃➱ Γ (z) Ú ❊❋ Re z > −1 ➴➱ÝÞãä✵❑▲✬▼✑◆ãä❖På➱✏✑◗❘á Γ (z) ✬✍ ❏ Ù❙✬ í ✒◆ Γ (z) = 1 z Γ (z + 1), z 6= 0 ❚✶Ù Γ (z) Ú ❊❋ Re z > 1 ➴➱❒❮✬ ❑ z = 0 ❯ Ù Γ ✃❐➱ë❱❲❯ ✬ res Γ (0) = 1 ✵ • ❳❨➴❩ ❬❭✬❪í ✒ê Γ ✃❐ãäå ❊❋ Re z > −2 ✬ Γ (z) = 1 z(z + 1)Γ (z + 2), z 6= 0, −1. z = −1 ✹Ù Γ ✃❐➱ë❱❲❯ ✬ res Γ (−1) = −1 ✵ • ▼à❫❴✬ ❏í ✒ê Γ ✃❐ÝÞãäåÛÜ ➷✬ ❑ z = 0, −1, −2, · · · ✪ Ù Γ ✃❐➱ë ❱❲❯ ✬ res Γ (−n) = (−1)n n! .
<<向上翻页向下翻页>>
©2008-现在 cucdc.com 高等教育资讯网 版权所有