正在加载图片...
(4)经计算,可依次得到 1 d(ax+by+cr) ox ax+ by+cz +by+ (ar t by+ (ax+by+cr) d(ax+ by+c=) ax'(ax+by +c=) (ax+by+cz u ax+ by+c ax(ax+by+c- (ax+by+cr) a31 2a2b Ox ay ayax(ax+ by+c) ay (ax+by +cz) au 3. 2ab a(ax+by+cz) 6a2b2 Ox ay ay ax(ax+by+cr) (ax+by+cz) a9(-b)o axa d"(x-a)"d"(y-b) p!q! (6)对x,y,z应用 Leibniz公式 aPu a(xe )a(e)a(ze) d(xe)d(ye')d(ze) Ox ava v9 az d x (x+ p)e (y+q)e. (=+r)e x+1 17.计算下列函数的高阶微分 (1)z=xln(xy),求d2z (2)E=sin(ax+by), x d'z (3)u=exy+( 2),求d3u;; +y+2), (4)z= e sin y,求dkz 解(1)止=(m(x)+1)+x,(4) 经计算,可依次得到 u a 1 ( x by cz) a x ax by cz x ax by cz ∂ ∂ + + = = ∂ + + ∂ + + , 2 2 2 2 ( ) ( ) ( ) u a ax by cz a 2 x ax by cz x ax by cz ∂ ∂ + + = − = − ∂ + + ∂ + + , 3 2 3 3 3 2 ( ) 2 ( ) ( ) u a ax by cz a 3 x ax by cz x ax by cz ∂ ∂ + + = = ∂ + + ∂ + + , 4 3 4 4 3 2 ( ) 6 ( ) ( ) u a ax by cz a 4 4 x ax by cz x ax by cz ∂ ⋅ ∂ + + = − = − ∂ + + ∂ + + , 3 3 2 2 u u x y y x ∂ ∂ = ∂ ∂ ∂ ∂ = 2 2 3 3 2 ( ) 2 ( ) ( ) a ax by cz a b ax by cz y ax by cz ∂ + + = + + ∂ + + , 4 4 2 2 2 2 2 2 2 4 4 3 2 ( ) 6 ( ) ( ) u u a b ax by cz a b x y y x ax by cz y ax by cz ∂ ∂ ⋅ ∂ + + = = − = − ∂ ∂ ∂ ∂ + + ∂ + + 。 (5) ( ) ( ) p q p q p q q p p q p q p q z z y x a x y x y x y + ∂ ∂ ⎛ ⎞ ∂ ∂ ⎛ ∂ − = = ⎜ ⎟ ⎜ − ∂ ∂ ∂ ⎝ ⎠ ∂ ∂ ⎝ ∂ b ⎞ ⎟ ⎠ ( ) ( ) p p q q p q d x a d y b dx dy − − = = p q! !。 (6) 对 x,y,z 应用 Leibniz 公式, ( ) ( ) ( ) ( ) ( ) ( p q r p x q y r z p x q y r z p q r p q r p q r u xe ye ze d xe d ye d ze ) x y z x y z dx dy dz + + ∂ ∂ ∂ ∂ = = ∂ ∂ ∂ ∂ ∂ ∂ 。 =( ) ( ) ( ) x y z x + ⋅ p e y + q e ⋅ z + r e =( )( )( ) x y z x p y q z r e + + + + + 。 17.计算下列函数的高阶微分: (1) z = x ln(xy),求d2 z ; (2) z = sin 2 (ax + by) ,求d3 z; (3)u = ex+ y+z (x 2 + y 2 + z 2 ),求d3 u ;; (4) z = ex sin y ,求dk z 。 解 (1) (ln( ) 1) x dz xy dx dy y = + + , 10
<<向上翻页向下翻页>>
©2008-现在 cucdc.com 高等教育资讯网 版权所有