正在加载图片...
(4)y=lnx(x≠0) 解当x<0时,y=[ln(-x= r 当x>0时y=(my=21;即(uxy=1 (5)y=x“(a∈R) 解 ∵x= , aInx.(x)=(e=em(aInx) x"·C a (6)y=tan 解y=(tan-)=sec-() sec8 解 0 , [ln( )]' 当 x y x  = − = 时  1 0 , (ln ) ; x y x x 当  = = 时   1 (ln ) . x x 即  = ln ln x x x e e    解 = = ln ln ( ) ( ) ( ln ) x x x e e x     = =      (4) ln ( 0) y x x =  (5) ( ) y x R  =  1 1 x x x     − =   = 1 1 x x − = − 1 (6) tan y x = 1 1 1 y' (tan )' sec ( )' x x x 解 = = 2 1 1 sec x x = −
<<向上翻页向下翻页>>
©2008-现在 cucdc.com 高等教育资讯网 版权所有