正在加载图片...
n-diffusion mask poly mask cross-sectional view FIGURE 25.6 Fabrication steps for an nMOS transistor. Implementing the design rules based on lambda makes the design process independent of the fabrication process. This allows the design to be rescaled as the fabrication process improves Metal layers are used as wires for connections between the components. This is because metal has the lowest propagation delay compared to the other layers. However, sometimes a poly layer is also used for short wires in order to reduce the complexity of the wire routing. Any wire can cross another wire without getting electricall affected as long as they are in different layers. Two different layers can be electrically connected together using contacts. The fabrication process of the contacts depends on types of the layers that are to be connected. Therefore, a layout editor supports different types of contacts by using different patterns From the circuit layout, the actual chip is fabricated. Based on the layers in the layout, various layers of materials,one on top of the others, are laid down on a silicon wafer. Typically, the processing of laying down each of these materials involves several steps, such as masking, oxide coating, lithography and etching [Mead and Conway, 1980]. For example, as shown in Fig. 25.6(a), for fabricating an nMOS transistor, first two mask one for poly and one for n-diffusion, are obtained from the circuit layout. Next, the n-diffusion mask is used to create a layer of silicon oxide on the wafer [see Fig. 25. 6(b). The wafer will be covered with a thin layer of oxide in places where the transistors are supposed to be placed as opposed to a thick layer in other places. The poly mask is used to place a layer of polysilicon on top of the oxide layer to define the gate terminals of the transistor [see Fig. 25.6(c)). Finally, the n-diffusion regions are made to form the source and drain terminals of the transistor [see Fig. 25.6(d)] To better illustrate the concept of layout design, the design of an inverter in the Cmos technology is shown in Fig. 25.7. An inverter produces an output voltage that is the logical inverse of its input. Considering the circuit diagram of Fig. 25.7(a), when the input is 1, the lower nMOS is on, but the upper pMOS is off. Thus, the output becomes o by becoming connected to the ground through the nMOS. On the other hand, if the input is 0, the pMOS is on and the nMOS is off, so the output must find a charge-up path through the pMOS to the supply and therefore becomes 1. Figure 25.7(b)represents a layout for such an inverter. As can be seen from this figure, the problem of a layout design is essentially reduced to drawing and painting a set of polygons. Layout editors provide commands for drawing such polygons. The commands are usually entered at the keyboard or with a mouse and, in some menu-driven packages, can be selected as options from a pull-down menu. c 2000 by CRC Press LLC© 2000 by CRC Press LLC Implementing the design rules based on lambda makes the design process independent of the fabrication process. This allows the design to be rescaled as the fabrication process improves. Metal layers are used as wires for connections between the components. This is because metal has the lowest propagation delay compared to the other layers. However, sometimes a poly layer is also used for short wires in order to reduce the complexity of the wire routing.Any wire can cross another wire without getting electrically affected as long as they are in different layers. Two different layers can be electrically connected together using contacts. The fabrication process of the contacts depends on types of the layers that are to be connected. Therefore, a layout editor supports different types of contacts by using different patterns. From the circuit layout, the actual chip is fabricated. Based on the layers in the layout, various layers of materials, one on top of the others, are laid down on a silicon wafer. Typically, the processing of laying down each of these materials involves several steps, such as masking, oxide coating, lithography and etching [Mead and Conway, 1980]. For example, as shown in Fig. 25.6(a), for fabricating an nMOS transistor, first two masks, one for poly and one for n-diffusion, are obtained from the circuit layout. Next, the n-diffusion mask is used to create a layer of silicon oxide on the wafer [see Fig. 25.6(b)]. The wafer will be covered with a thin layer of oxide in places where the transistors are supposed to be placed as opposed to a thick layer in other places. The poly mask is used to place a layer of polysilicon on top of the oxide layer to define the gate terminals of the transistor [see Fig. 25.6(c)]. Finally, the n-diffusion regions are made to form the source and drain terminals of the transistor [see Fig. 25.6(d)]. To better illustrate the concept of layout design, the design of an inverter in the CMOS technology is shown in Fig. 25.7. An inverter produces an output voltage that is the logical inverse of its input. Considering the circuit diagram of Fig. 25.7(a), when the input is 1, the lower nMOS is on, but the upper pMOS is off. Thus, the output becomes 0 by becoming connected to the ground through the nMOS. On the other hand, if the input is 0, the pMOS is on and the nMOS is off, so the output must find a charge-up path through the pMOS to the supply and therefore becomes 1. Figure 25.7(b) represents a layout for such an inverter. As can be seen from this figure, the problem of a layout design is essentially reduced to drawing and painting a set of polygons. Layout editors provide commands for drawing such polygons. The commands are usually entered at the keyboard or with a mouse and, in some menu-driven packages, can be selected as options from a pull-down menu. FIGURE 25.6 Fabrication steps for an nMOS transistor
<<向上翻页向下翻页>>
©2008-现在 cucdc.com 高等教育资讯网 版权所有