方法2求齐次边界条件的齐次方程 (初始位移或速度不为零)。 1-an=-(vn-a)=0 v(x, t)=X(xsin at x+O2x=0X()=0,X()=A X(x)=Ccos(ox/a)+Dsin( ax/a) Y(0)=0→C=0 X()=A→ D=A/sin (ol/a) v(x,) sin( ox/a)sin at sin(al/a)方法2 求齐次边界条件的齐次方程 (初始位移或速度不为零)。 令: v(x,t) = X (x)sin t ( ) 0 2 2 wt t − a wxx = − vt t − a vxx = '' 0 2 2 + X = a X X(0) = 0, X(l) = A X (x) = Ccos(x / a) + Dsin(x / a) X (0) = 0 C = 0 X (l) = A D = A/sin(l / a) x a t l a A v x t sin( / )sin sin( / ) ( , ) =