正在加载图片...
(3)d2U(u)g{() (4)dng(a); f( g() AF (1) df=f(u)u(x)dx=f(tan x)sec2xdx df=f(ulu(x)]dx+f(u)u(x)dx If" (tan x)secx+2f(tan x)sec x tan x ]dx (2)u=√=√nx, du dy dx dx=g(u) d=g(√nx) 2 Inx x 2x√ln du dv g(u d2g=[ d_g{a2x、ymnx) 2x√nx (2xvIn r)]dr2 g"(u) gu2√mx+2x1 In JIn g"√nxmx-8(√mx+2laxc2 4x In 2x (3)dff(ug(u]=L'(ug(u)+f(ug(u]du d2[f(n)g(l)=[f(u)g(an)+f(u)g:(un)kd2u+[f()g(l)+f()g() =[f(u)g(u)+f()gta)d2u+[f"()g()+2f(u)gt(u)+f(l)g"()]dhn2 (4)dng(u)=8()d, dlmgao)=8(ad+(Bayd2=8ad+8"ag(u)-(g(a) g(u) (a) (5)d(a)1=()-/(g(a)tm, g(u⑶ d f u g u 2 [ ( ) ( )]; ⑷ d g u 2 [ln ( )]; ⑸ ⎥ ⎦ ⎤ ⎢ ⎣ ⎡ ( ) ( ) 2 g u f u d ; 解 (1)df = f '(u)u'(x)dx = f '(tan x)sec2 xdx , 2 2 2 d f = + f ''(u)[u '(x)] dx f '(u)u ''(x)dx2 4 2 2 = + [ f "(tan x x )sec 2 f '(tan x)sec x tan x]dx 。 (2)u = v = ln x , 1 1 1 '( ) '( ln ) 2 ln 2 ln dg du dv dg dx g u dx g x dx du dv dx x x x x = = = , 2 2 2 "( ) '( )(2 ln )' [ ] 2 ln (2 ln ) du dv g u dv dx g u x x d g dx x x x x = − 2 2 2 1 1 '( )[2 ln 2 ( )] "( ) 2 ln (2 ln ) (2 ln ) g u x x g u x x dx x x x x ⎧ ⎫ + ⋅ ⎪ ⎪ = − ⎨ ⎬ ⎪ ⎪ ⎩ ⎭ 2 3 2 2 "( ln ) ln '( ln )(1 2ln ) 4 ln g x x g x x dx x x − + = 。 (3)d[ f (u)g(u)] = [ f '(u)g(u) + f (u)g'(u)]du , 2 2 2 d [ f (u)g(u)] = [ f '(u)g(u) + f (u)g'(u)]d u +[ f '(u)g(u) + f (u)g(u)]'du 2 2 = + [ f '( ) u g( ) u f ( ) u g '(u)]d u +[ f "( ) u g( ) u + 2 f '( ) u g '(u) + f (u g) "( ) u ]du 。 (4) du g u g u d g u ( ) '( ) [ln ( )] = , 2 2 2 2 2 2 '( ) '( ) '( ) "( ) ( ) ( '( )) [ln ( )] [ ]' ( ) ( ) ( ) ( ) g u g u g u g u g u g u d g u d u du d u du g u g u g u g u − = + = + 2。 (5) du g u f u g u f u g u g u f u d ( ) '( ) ( ) ( ) '( ) ( ) ( ) 2 − =⎥ ⎦ ⎤ ⎢ ⎣ ⎡ , 94
<<向上翻页向下翻页>>
©2008-现在 cucdc.com 高等教育资讯网 版权所有