910 工程科学学报,第43卷,第7期 2.2 a) -.-Deviatoric stress:0 MPa 80 04g Deviatoric stress:0 MPa -+--Deviatoric stress:26.1 MPa -+-Deviatoric stress:26.1 MPa Deviatoric stress:8.1 MPa Deviatoric stress:8.1 MPa ■、 Deviatoric stress:30 MPa Deviatoric stress:30 MPa 0.3 1.4 12 0.2 ● 、 1.0 1- 0.8 0.1 8 9 0 8 9 10 Confining pressure/MPa Confining pressure/MPa 图17不同偏压下渗透演化规律.(a)R1岩样:(b)R2岩样 Fig.17 Permeability evolution under variable deviatoric stress:(a)RI sample;(b)R2 sample Deviatoric stress loading △lfx=△lr-△lmx (4) -e.Permeability ratio:RI sample -A-.Permeability ratio:R2 sample 式中,△W为裂隙变形,△u和△umr分别为岩块和基 Confining Confining Confining Confining pressure pressure pressure pressure 质变形 73 MPa 8.3 MPa 9.3 MPa 10.3 MPa 36 12 基于胡克定律,岩块和基质变形分别为: 1.0 27 A=-tArea-arg+Are (5) 0.8 8 aa=-元A如u-ag+A如e (6) 0.6 式中,E和Em分别为岩块和基质弹性模量,v为泊 0.4 松比,△cex、△ce、△c:分别为三个方向的有效应 0.2 力,e=c-p,e为有效应力,c为总应力,p为渗透 4 8 16 Loading level 压力 图18围压、偏压增长和渗透率比关系 根据式(4)得到裂隙变形量: Fig.18 Relationship between increasing confining pressure and deviatoric stress and permeability ratio △fx= (7) 质渗透率恒定.基于Warren-Root双重介质模型将 对式(3)有效应力求微分: 实际岩石简化为正交裂缝切割基质,岩块呈六面 3Ab△S 体形状(图19),其裂隙的渗透率为41: (8) 63 式中,△b和△s分别为裂隙和基质的变形量,△b= (3) 12s △l,△s=△lmr. 由式(6)和式(7)分别得到裂隙和基质沿水平 Fracture 方向的线应变: 6 1(9) Matrix -2Aoa-aog+加e月 (10) stb 将式(9)和式(10)代入式(8),积分得到泥岩 裂隙渗透率演化力学模型: 图19 Warren-Root模型 Fig.19 Warren-Root model Kf 模型单元体中,s为基质边长,b为裂隙宽度; ex、σe分别为水平和垂直应力.单元体裂隙变形 aa信+n-2nla-toe (11 等于岩块总变形减去基质变形: 式中,Ko为与渗透率相关的参数;参数D=1/E,质渗透率恒定. 基于 Warren-Root 双重介质模型将 实际岩石简化为正交裂缝切割基质,岩块呈六面 体形状(图 19),其裂隙的渗透率为[24] : Kf = b 3 12s (3) s b σex σey 模型单元体中, 为基质边长, 为裂隙宽度; 、 分别为水平和垂直应力. 单元体裂隙变形 等于岩块总变形减去基质变形: ∆ufx = ∆ux −∆umx (4) 式中, ∆ufx为裂隙变形, ∆ux和 ∆umx分别为岩块和基 质变形. 基于胡克定律,岩块和基质变形分别为: ∆ux=− s+b E [ ∆σex −ν ( ∆σey + ∆σez )] (5) ∆umx=− s Em [ ∆σex −ν ( ∆σey + ∆σez )] (6) E Em ν ∆σex ∆σey ∆σez σe=σ−p σe σ p 式中, 和 分别为岩块和基质弹性模量, 为泊 松比, 、 、 分别为三个方向的有效应 力, , 为有效应力, 为总应力, 为渗透 压力. 根据式(4)得到裂隙变形量: ∆ufx=− ( s+b E − s Em ) [ ∆σex −ν ( ∆σey + ∆σez )] (7) 对式(3)有效应力求微分: dKf = Kf ( 3∆b b − ∆s s ) (8) ∆b ∆s ∆b= ∆ufx ∆s=∆umx 式中, 和 分别为裂隙和基质的变形量, , . 由式(6)和式(7)分别得到裂隙和基质沿水平 方向的线应变: ∆b b =− 1 b ( s+b E − s Em ) [ ∆σex −ν ( ∆σey + ∆σez )] (9) ∆s s =− 1 Em [ ∆σex −ν ( ∆σey + ∆σez )] (10) 将式(9)和式(10)代入式(8),积分得到泥岩 裂隙渗透率演化力学模型: Kf = Kf0 · exp{ − [(3s b +1 ) (D− Dm)+2D ] [ σex −ν ( σey+σez )]} (11) 式中 , Kf0 为与渗透率相关的参数 ;参数 D = 1/E, 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 7 8 9 10 11 Permeability/(10−19 m2 ) Confining pressure/MPa Deviatoric stress: 0 MPa Deviatoric stress: 8.1 MPa Deviatoric stress: 26.1 MPa Deviatoric stress: 30 MPa (a) 0.1 0.2 0.3 0.4 7 8 9 10 11 Permeability/(10−17 m2 ) Confining pressure/MPa Deviatoric stress: 0 MPa Deviatoric stress: 8.1 MPa Deviatoric stress: 26.1 MPa Deviatoric stress: 30 MPa (b) 图 17 不同偏压下渗透演化规律. (a)R1 岩样;(b)R2 岩样 Fig.17 Permeability evolution under variable deviatoric stress: (a) R1 sample; (b) R2 sample 0.2 0.4 0.6 0.8 1.0 1.2 0 9 18 27 36 0 4 8 12 16 Permeability ratio Deviatoric stress/MPa Loading level Deviatoric stress loading Permeability ratio: R1 sample Permeability ratio: R2 sample Confining pressure 7.3 MPa Confining pressure 8.3 MPa Confining pressure 9.3 MPa Confining pressure 10.3 MPa 图 18 围压、偏压增长和渗透率比关系 Fig.18 Relationship between increasing confining pressure and deviatoric stress and permeability ratio Fracture σex σey Matrix s s+b 、 图 19 Warren-Root 模型 Fig.19 Warren-Root model · 910 · 工程科学学报,第 43 卷,第 7 期