正在加载图片...
·1384· 工程科学学报,第39卷,第9期 C Cu (a (b) Cu Cu Cu Si Cu 6 91011 01234567891011 能量keV 能量keV 图7不同SPs质量浓度的化学镀铜沉积层的能谱分析.(a)0:(b)0.6mgL-1 Fig.7 EDS spectrograms of copper layers obtained at different SPS mass concentrations:(a)0;(b)0.6 mgL 50000r (200) (4)通过扫描电镜和X射线衍射对结构的分析, 镀层铜纯净度较高,无氧化铜等夹杂,镀层细致平滑, 40000 镀液加入SPS后,镀层有(200)晶面择优取向的趋势. 30000 (220, 参考文献 20000 [1]Narcus H.Practical copper reduction on nonconductor.Metal Fin- SPS质量浓度 (111) 10000 ish,1947,45(2):964 [2]Cahill A E.Surface catalyzed reduction of copper.Am Electrochem Soc Proc,1957,44:130 0 102030 4050 60708090 20所 [3]An M Z,Tu Z M,Zhang JS,et al.Study of the stability and Cu 图8不同SPS质量浓度的化学镀铜沉积层的X射线衍射谱图 deposition rate of bicomplex electroless Cu bath.Electroplating Pollut Control,1990,10(5):1 Fig.8 XRD patterns of electroless copper layers obtained at different (安茂忠,居振密,张景双,等.双络合剂化学镀铜液的稳定 SPS mass concentrations 性和沉铜速度研究.电镀与环保,1990,10(5):1) 表2不同SPS质量浓度对X射线衍射强度占比 [4] Zheng Y J,Li C H.Zou W H.Study on electroless copper plating Table 2 Intensity ratios of the characteristic XRD peaks of copper layers technology of high plating rate in triethanolamine and EDTA 2Na obtained at different SPS mass concentrations dual-chelating-agent system.Mater Rev,2006,20(10):159 (郑雅杰,李春华,邹伟红.三乙醇胺和EDTA2Na盐双络合 SPS质量浓度/ X射线衍射强度占比/% 体系快速化学镀铜工艺研究.材料导报,2006,20(10): 1oo// (mg-L-1) (111) (200) (220) 159) S 9.0 52.5 38.5 5.78 [5] Zeng W M,Wu C S,Wu Y S.Dynamic parameters of multicom- plexing electroless Cu deposition.J Mater Prot,2001,34(6):24 0.2 8.9 53.7 37.4 6.03 (曾为民,吴纯素,吴荫顺.多元络合剂化学镀铜动力学参数 0.4 7.6 54.6 37.8 7.20 的研究.材料保护,2001,34(6):24) 0.6 4.6 60.0 35.4 13.18 [6] Gu X,Wang Z C.Lin C J.An electrochemical study of the effects of chelating agents and additives on electroless copper plating. 3结论 Electrochemistry,2004,10(1):14 (谷新,王周成,林昌健.络合剂和添加剂对化学镀铜影响的 (1)聚二硫二丙烷磺酸钠使二元络合体系化学镀 电化学研究.电化学,2004,10(1):14) [7]Shingubara S,Wang Z L,Yaegashi O,et al.Bottom-up fill of 铜的混合电位负移,负移呈现平缓趋势,无明显突变现 copper in deep submicrometer holes by electroless plating.Electro- 象,这可能与二元络合剂释放铜离子能力不同,形成相 chem Solid-State Lett,2004,7(6):C78 互缓冲和补充所致. [8]Miura S,Honma H.Advancecd copper electroplating for applica- (2)线性扫描伏安法测试表明SPS促进了阴极还 tion of electronics.Suf Coat Technol,2003,169-170:91 原与阳极氧化两极的极化作用,对阴极极化促进较 [9]Kobayashi T,KawasakiJ,Mihara K,et al.Via-filling using elec- 小,主要是影响甲醛阳极氧化过程. troplating for build-up PCBs.Electrochim Acta,2001,47(1-2): 雪 (3)测试二元体系的沉积行为,发现SPS能提高 [10]Gu X.Hu G H,Wang Z C,et al.In situ investigation on the 体系沉积速率. behavior of mixed potential in electroless copper plating.Acta工程科学学报,第 39 卷,第 9 期 图 7 不同 SPS 质量浓度的化学镀铜沉积层的能谱分析. (a) 0; (b) 0郾 6 mg·L - 1 Fig. 7 EDS spectrograms of copper layers obtained at different SPS mass concentrations: (a) 0; (b) 0郾 6 mg·L - 1 图 8 不同 SPS 质量浓度的化学镀铜沉积层的 X 射线衍射谱图 Fig. 8 XRD patterns of electroless copper layers obtained at different SPS mass concentrations 表 2 不同 SPS 质量浓度对 X 射线衍射强度占比 Table 2 Intensity ratios of the characteristic XRD peaks of copper layers obtained at different SPS mass concentrations SPS 质量浓度/ (mg·L - 1 ) X 射线衍射强度占比/ % (111) (200) (220) I200 / I111 0 9郾 0 52郾 5 38郾 5 5郾 78 0郾 2 8郾 9 53郾 7 37郾 4 6郾 03 0郾 4 7郾 6 54郾 6 37郾 8 7郾 20 0郾 6 4郾 6 60郾 0 35郾 4 13郾 18 3 结论 (1)聚二硫二丙烷磺酸钠使二元络合体系化学镀 铜的混合电位负移,负移呈现平缓趋势,无明显突变现 象,这可能与二元络合剂释放铜离子能力不同,形成相 互缓冲和补充所致. (2) 线性扫描伏安法测试表明 SPS 促进了阴极还 原与阳极氧化两极的极化作用, 对阴极极化促进较 小,主要是影响甲醛阳极氧化过程. (3) 测试二元体系的沉积行为,发现 SPS 能提高 体系沉积速率. (4) 通过扫描电镜和 X 射线衍射对结构的分析, 镀层铜纯净度较高,无氧化铜等夹杂,镀层细致平滑, 镀液加入 SPS 后,镀层有(200)晶面择优取向的趋势. 参 考 文 献 [1] Narcus H. Practical copper reduction on nonconductor. Metal Fin鄄 ish, 1947, 45(2):964 [2] Cahill A E. Surface catalyzed reduction of copper. Am Electrochem Soc Proc, 1957, 44: 130 [3] An M Z, Tu Z M, Zhang J S, et al. Study of the stability and Cu deposition rate of bicomplex electroless Cu bath. Electroplating Pollut Control, 1990, 10(5): 1 (安茂忠, 屠振密, 张景双, 等. 双络合剂化学镀铜液的稳定 性和沉铜速度研究. 电镀与环保, 1990, 10(5): 1) [4] Zheng Y J, Li C H, Zou W H. Study on electroless copper plating technology of high plating rate in triethanolamine and EDTA 2Na dual鄄chelating鄄agent system. Mater Rev, 2006, 20(10): 159 (郑雅杰, 李春华, 邹伟红. 三乙醇胺和 EDTA·2Na 盐双络合 体系快速化学镀铜工艺研究. 材料导报, 2006, 20 ( 10 ): 159) [5] Zeng W M, Wu C S, Wu Y S. Dynamic parameters of multicom鄄 plexing electroless Cu deposition. J Mater Prot, 2001, 34(6): 24 (曾为民, 吴纯素, 吴荫顺. 多元络合剂化学镀铜动力学参数 的研究. 材料保护, 2001, 34(6): 24) [6] Gu X, Wang Z C, Lin C J. An electrochemical study of the effects of chelating agents and additives on electroless copper plating. Electrochemistry, 2004, 10(1): 14 (谷新, 王周成, 林昌健. 络合剂和添加剂对化学镀铜影响的 电化学研究. 电化学, 2004, 10(1): 14) [7] Shingubara S, Wang Z L, Yaegashi O, et al. Bottom鄄up fill of copper in deep submicrometer holes by electroless plating. Electro鄄 chem Solid鄄State Lett, 2004, 7(6): C78 [8] Miura S, Honma H. Advancecd copper electroplating for applica鄄 tion of electronics. Surf Coat Technol, 2003, 169鄄170: 91 [9] Kobayashi T, Kawasaki J, Mihara K, et al. Via鄄filling using elec鄄 troplating for build鄄up PCBs. Electrochim Acta, 2001, 47(1鄄2): 85 [10] Gu X, Hu G H, Wang Z C, et al. In situ investigation on the behavior of mixed potential in electroless copper plating. Acta ·1384·
<<向上翻页向下翻页>>
©2008-现在 cucdc.com 高等教育资讯网 版权所有