正在加载图片...
湛菁等:球形氧化镍粉末对乙醇的电催化性能的研究 ·1143· 剂材料往往因为自毒化现象而表现出较差的耐受性和 稳定性,因此如果用这种氧化镍粉末与贵金属催化剂 3结论 材料进行复合,有望改善贵金属催化剂的这种缺陷,并 (1)采用水热一热分解法制备球形介孔NO粉 可降低燃料电池催化剂的成本,推进燃料电池商业化 末,其比表面积为35m2·g,平均孔径为15.88nm. 进程. (2)球形介孔NiO粉末修饰的玻碳电极在NaOH 0.2 溶液中对乙醇有催化活性:乙醇氧化反应属扩散控制, 氧化电流随乙醇浓度和扫描速率的增大而增大. (3)球形介孔N0粉末具有良好的稳定性,进一 0.1 步与贵金属催化剂复合,有望改善贵金属催化剂因自 中毒而导致稳定性差的缺陷. 参考文献 [De Souza EA,Giz M J,Camara G A,et al.Ethanol electro-oxi- dation on partially alloyed Pt-Sn-Rh/C catalysts.Electrochim 0 200 400 600 800 1000 Acta,2014,147:483 2]Li X L,Faghri A.Review and advances of direct methanol fuel 图7NiO/GCE在0.1mal-L乙醇的Na0H溶液中的1000s计 cells(DMFCs):Part I.Design,fabrication,and testing with 时电流曲线.电位:0.6V high concentration methanol solutions.Power Sources,2013, Fig.7 Chronoamperometry curve of Ni/GCE in the presence of0.1 226(6):223 mol-L ethanol in NaOH solution for 1000s at 0.60 V B] Barakat N A M,Abdelkareem M A,Kim H Y.Ethanol electro- oxidation using cadmium-doped cobalt/carbon nanoparticles as no- 为研究乙醇氧化反应在球形介孔NO上的传质 vel non precious electrocatalyst.Appl Catal A,2013,455:193 特性,采用交流阻抗法对NiO/GCE进行研究,其 4] Antolini E.Catalysts for direct ethanol fuel cells.J Powcer Nyquist图及相应等效电路如图8所示.由图可知, Sources,2007170(1):1 NO/GCE的阻抗谱为一个变形的半圆,该半圆与溶 [5]Sieben J M.Duarte MM E.Methanol,ethanol and ethylene gly- 液电阻和传质电阻有关;半圆的变形是由电极表面 col electro-xidation at P and P-Ru catalysts electrodeposited 粗糙多孔的结构引起的.通过软件对该阻抗谱进行 over oxidized carbon nanotubes.Int J Hydrogen Energy,2012,37 (13):9941 分析,得到如图8中插图所示的等效电路图.在等效 6 Zhang Z Y,Xin L,Sun K,et al.Pd-Ni electrocatalysts for effi- 电路中,R和R分别代表溶液电阻和传质电阻:CPE cient ethanol oxidation reaction in alkaline electrolyte.Int I 为常相位角元件,用来代替理想电容.经计算,等效 Hydrogen Energy,2011,36(20)12686 电路中电阻阻值R和R.分别为9.292和156.62. ] Tayal J,Rawat B,Basu S.Bi-metallic and tri-metallic P-Sn/C, 这种较小的传质电阻表明,球形介孔N0催化乙醇 Pt-r/C,P-Ir-Sn/C catalysts for electro-oxidation of ethanol in 氧化的传质过程高效,进一步证明明球形NO良好 direct ethanol fuel cell.Int J Hydrogen Energy,2011,36(22): 的催化活性. 14884 8] Bambagioni V,Bianchini C,Marchionni A,et al.Pd and Pt-Ru 1600 anode electrocatalysts supported on multiwalled carbon nanotubes CPE 1400 and their use in passive and active direet alcohol fuel cells with an 1200 anion-exchange membrane alcohol methanol,ethanol,glycer- ol).JPower Sources,2009190(2):241 1000 ]Zhan J,Cai M,Zhang C F,et al.Synthesis of mesoporous 800 NiCo2O fibers and their electrocatalytic activity on direct oxida- 600 tion of ethanol in alkaline media.Electrochim Acta,2015,154:70 400 [10]Huang Y,Huang X L,Lian JS,et al.Self-assembly of ultrathin porous NiO nanosheets/graphene hierarchical structure for high- 200 capacity and high-tate lithium storage.J Mater Chem,2012,22 2004006008001000120014001600 (7):2844 T'IQ [11]Zhang X J,Shi W H,Zhu J X,et al.Synthesis of porous Nio 图8球形介孔NiO的Nyquist图谱和等效电路图 nanocrystals with controllable surface area and their application as Fig.8 Nyquist diagram of NiO/CCE and equivalent circuit supercapacitor electrodes.Nano Res,2013,3(9):643湛 菁等: 球形氧化镍粉末对乙醇的电催化性能的研究 剂材料往往因为自毒化现象而表现出较差的耐受性和 稳定性,因此如果用这种氧化镍粉末与贵金属催化剂 材料进行复合,有望改善贵金属催化剂的这种缺陷,并 可降低燃料电池催化剂的成本,推进燃料电池商业化 进程. 图 7 NiO /GCE 在 0. 1 mol·L - 1乙醇的 NaOH 溶液中的 1000 s 计 时电流曲线. 电位: 0. 6 V Fig. 7 Chronoamperometry curve of NiO /GCE in the presence of 0. 1 mol·L - 1 ethanol in NaOH solution for 1000 s at 0. 60 V 为研究乙醇氧化反应在球形介孔 NiO 上的传质 特性,采用交流阻抗法对 NiO /GCE 进 行 研 究,其 Nyquist 图及相应等效电路如图 8 所 示. 由 图 可 知, NiO /GCE 的阻抗谱为一个变形的半圆,该半圆与溶 液电阻和传质电阻有关; 半圆的变形是由电极表面 粗糙多孔的结构引起的. 通过软件对该阻抗谱进行 分析,得到如图 8 中插图所示的等效电路图. 在等效 电路中,RS和 Rct分别代表溶液电阻和传质电阻; CPE 为常相位角元件,用来代替理想电容. 经计算,等效 电路中电阻阻值 RS和 Rct分别为 9. 29 Ω 和 156. 6 Ω. 这种较小的传质电阻表明,球形介孔 NiO 催化乙醇 氧化的传质过程高效,进一步证明明球形 NiO 良好 的催化活性. 图 8 球形介孔 NiO 的 Nyquist 图谱和等效电路图 Fig. 8 Nyquist diagram of NiO /GCE and equivalent circuit 3 结论 ( 1) 采用水热--热分解法制 备 球 形 介 孔 NiO 粉 末,其比表面积为 35 m2 ·g - 1,平均孔径为 15. 88 nm. ( 2) 球形介孔 NiO 粉末修饰的玻碳电极在 NaOH 溶液中对乙醇有催化活性; 乙醇氧化反应属扩散控制, 氧化电流随乙醇浓度和扫描速率的增大而增大. ( 3) 球形介孔 NiO 粉末具有良好的稳定性,进一 步与贵金属催化剂复合,有望改善贵金属催化剂因自 中毒而导致稳定性差的缺陷. 参 考 文 献 [1] De Souza E A,Giz M J,Camara G A,et al. Ethanol electro-oxi￾dation on partially alloyed Pt--Sn--Rh /C catalysts. Electrochim Acta,2014,147: 483 [2] Li X L,Faghri A. Review and advances of direct methanol fuel cells( DMFCs) : Part Ⅰ. Design,fabrication,and testing with high concentration methanol solutions. J Power Sources,2013, 226( 6) : 223 [3] Barakat N A M,Abdelkareem M A,Kim H Y. Ethanol electro￾oxidation using cadmium-doped cobalt /carbon nanoparticles as no￾vel non precious electrocatalyst. Appl Catal A,2013,455: 193 [4] Antolini E. Catalysts for direct ethanol fuel cells. J Power Sources,2007 170( 1) : 1 [5] Sieben J M,Duarte M M E. Methanol,ethanol and ethylene gly￾col electro-oxidation at Pt and Pt--Ru catalysts electrodeposited over oxidized carbon nanotubes. Int J Hydrogen Energy,2012,37 ( 13) : 9941 [6] Zhang Z Y,Xin L,Sun K,et al. Pd--Ni electrocatalysts for effi￾cient ethanol oxidation reaction in alkaline electrolyte. Int J Hydrogen Energy,2011,36( 20) : 12686 [7] Tayal J,Rawat B,Basu S. Bi-metallic and tri-metallic Pt--Sn /C, Pt--Ir /C,Pt--Ir--Sn /C catalysts for electro-oxidation of ethanol in direct ethanol fuel cell. Int J Hydrogen Energy,2011,36( 22) : 14884 [8] Bambagioni V,Bianchini C,Marchionni A,et al. Pd and Pt--Ru anode electrocatalysts supported on multi-walled carbon nanotubes and their use in passive and active direct alcohol fuel cells with an anion-exchange membrane ( alcohol = methanol,ethanol,glycer￾ol) . J Power Sources,2009,190( 2) : 241 [9] Zhan J,Cai M,Zhang C F,et al. Synthesis of mesoporous NiCo2O4 fibers and their electrocatalytic activity on direct oxida￾tion of ethanol in alkaline media. Electrochim Acta,2015,154: 70 [10] Huang Y,Huang X L,Lian J S,et al. Self-assembly of ultrathin porous NiO nanosheets/graphene hierarchical structure for high￾capacity and high-rate lithium storage. J Mater Chem,2012,22 ( 7) : 2844 [11] Zhang X J,Shi W H,Zhu J X,et al. Synthesis of porous NiO nanocrystals with controllable surface area and their application as supercapacitor electrodes. Nano Res,2013,3( 9) : 643 · 3411 ·
<<向上翻页向下翻页>>
©2008-现在 cucdc.com 高等教育资讯网 版权所有