正在加载图片...
割线上岸arg(x-a)=0,就给出单值分枝I;如果规定在割线上岸arg(z-a)=2π,就给出单值 分枝Ⅱ.这两个单值分枝合起来,就得到一个完整的v平面,即整个多值函数v,割线的作用, 就是限制z的变化方式,由于割线连结了多值函数的两个枝点,z=a和∞,因此,z不再能够 绕一个分枝点转一圈了(这时,同时围绕两个分枝点转一圈还是允许的) 单值分枝的划分,或者说,宗量辐角变化范围的规定不是唯一的.例如,也可以规定 (z-a)<丌和 3x/2≤arg(z-a)<丌/2和/2≤arg(z-a)<5m/2 割线的作法多种多样,甚至不必是直线.只要割线连结了多值函数的分枝点,同时适当规定割线一 侧(例如上岸或下岸)的宗量辐角值(或者等价地,规定在某一点的宗量辐角值或函数值)即可 将多值函数划分为单值分枝,其优点是,每个单值分枝都是单值函数,因而可以像普通的单 值函数那样讨论它们的解析性.单值函数的分枝点是奇点,它不对应于哪一个单值分枝.在枝点 附近,也不存在一个只对应于一个单值分枝的邻域.这种划分的缺点是有一定的局限性.因为它 限制了宗量的辐角变化范围,就不能用来讨论一些比较复杂的问题 为了克服这个缺点,另一种完全确定函数值与自变量值对应关系的办法是:规定函数v在某 点ω0的值,并明确说明z的连续变化路线.当z沿这曲线连续变化时,函数u也随之连续变 化 令仍以函数m=√2-T为例规定m(2)=1,讨论2沿G或C2连续变化到原点时,函数m之 C1和C2是以z=1为圆心、1为半径的上半圆周和下半圆周 显然,当z沿C1移动到z=0时,△ag(2-1)=π,所 △argw arg(2 z沿C2移动到z=0时,△arg(z-1)=-丌,所以 T 采用这种办法,z的变化路线不受限制,因而就可以从一个单值分枝运动到另一个单值分枝 在几何图形上,这相当于将两个割开的2平面粘接起来,第一个面的割线下岸(arg(z-1)=27)和 第二个面的割线上岸(arg(z-1)=2m)相连,第一个面的割线上岸(arg(z-1)=0)和第二个面的 割线下岸(arg(z-1)=4丌)相连.这就构成了二叶 Riemann面(见图2.6).对于函数v 或 √z-a来说,二叶 Riemann面上的z点和v平面上的点是一一对应的Wu Chong-shi §2.2 ❈ ❉ ✂ ✄ ☎ 28 ✆ ⑧ ✰ ✔❶ arg(z − a) = 0 ❏ ô î➨✴ ➄❞❋ ♣➩✵✼✫❩ ✭ ⑧ ✰ ✔❶ arg(z − a) = 2π ❏ ô î➨✴ ➄ ❞❋ q✴✹✑✇ ✴ ➄❞❋ ✶✤✗❏ ô① ✸ ❳ ✇➧♠✱ w ▲▼❏ø♠✇❢➄✕✖ w ✴ ⑧ ✰✱✾➊ ❏ ô★ ❬❭ z ✱ ✬➤÷❤✴❯t⑧ ✰✱✕ ✂❢➄✕✖✱✑✇❋ P ❏ z = a ❵ ∞ ❏ ➥➦❏ z ➂❷✻❸ ❇ ❳ ✇❞❋ P❈❳❉ ✂ (✹■❏➃ ■ ❦ ❇✑✇❞❋ P❈❳❉ ❱ ★❹❺✱) ✴ ✴ ➄❞❋✱r❞❏❽õö❏ ✜ð✙ ✙ ✬➤❥ ❦ ✱ ✫❩➂★ ➎ ❳ ✱✴❷ ✵❏❚✤✥✫❩ −π ≤ arg(z − a) < π ❵ π ≤ arg(z − a) < 3π, ❽ −3π/2 ≤ arg(z − a) < π/2 ❵ π/2 ≤ arg(z − a) < 5π/2. ⑧ ✰✱✾③❢➜❢➓ ❏✉✈➂❻★⑨ ✰✴❣❤⑧ ✰✱✕ ✂❢➄✕✖✱❞❋ P ❏ ➃ ■✐❍ ✫❩⑧ ✰ ❳ ❼ (❷ ✵ ✔❶❽✠❶) ✱ ✜ð✙ ✙➄ (❽õs❽ ✝❏ ✫❩ ✭ ✭❳P✱ ✜ð✙ ✙➄❽ ✕✖➄) ø ✤ ✴ ✷❢➄✕✖r❞✿✴ ➄❞❋❏ ❝❾P★❏❧✇ ✴ ➄❞❋ ✣★✴ ➄✕✖❏➥ ✢ ✤✥❿➀➠ ✱ ✴ ➄✕✖➁ ➓ ♦ ✖✜✢✱✻✼✽✴✴ ➄✕✖✱❞❋ P★❖P❏ ✜➂ ⑤ ✪t➂❳ ✇ ✴ ➄❞❋✴✭❋ P ➃➁❏❚➂ ❜✭ ❳ ✇❣⑤ ✪t❳✇ ✴ ➄❞❋✱➄✯✴✹➜r❞✱➅ P★❂ ❳❩✱➆❬✽✴➥ ✿ ✜ ❬❭✂✜ð ✱ ✙ ✙ ✬➤❥ ❦❏ ô➂✻➊ ✗♦✖❳ ✺ ➇➈✮➉✱➊➋✴ ✿✂➌➍✹✇➅ P ❏ ➎❳ ➜➧❑✛❩ ✕✖➄✒ ï ✬ð➄⑤✪❍■✱❑③ ★ ➅ ❙ì❋● w ➏➐ ➑➒ z0 ë➓❏➔→➣↔→ z ë↕➙❲❳➛➜ ✴❍ z ❸✹ ✛✰✱✲✬➤■❏✕✖ w ❚❂✓✱✲✬ ➤ ✴ ⑥ ✥ ✕✖ w = √ z − 1 ✿ ❷ ✴ ✫❩ w(2) = 1 ❏♦ ✖ z ❸ C1 ❽ C2 ✱✲✬➤✸✺ P ■❏✕✖ w ✓ ➄✴ C1 ❵ C2 ★✥ z = 1 ✿ ➝➞❻ 1 ✿ ❛➟✱ ✔❛ ➝➆ ❵✠❛ ➝➆✴ ➠ ⑦❏❍ z ❸ C1 ➡➢✸ z = 0 ■❏ ∆ arg(z − 1) = π ❏❀ ✥ ∆ arg w = 1 2 ∆ arg(z − 1) = π 2 , w(0) = eiπ/2 = i. ❍ z ❸ C2 ➡➢✸ z = 0 ■❏ ∆ arg(z − 1) = −π ❏❀✥ ∆ arg w = 1 2 ∆ arg(z − 1) = − π 2 , w(0) = e−iπ/2 = −i. ✡➊ ✹➜❑③❏z ✱ ✬➤➤ ✰ ➂➥ ❬❭❏ ➥ ✢ ô✤✥⑤❳ ✇ ✴ ➄❞❋①➢✸ ➎❳ ✇ ✴ ➄❞❋✴ ✭ ② ✶ ❀ ➒ ✔ ❏✹ ✩ ❍ t ✷✑✇ ⑧➦✱ z ▲▼➧➨✤ ✗❏ ➩❳ ✇▼✱⑧ ✰ ✠❶ (arg(z − 1) = 2π) ❵ ➩➫✇▼✱⑧ ✰ ✔❶ (arg(z − 1) = 2π) ✩ ✱❏ ➩❳ ✇▼✱⑧ ✰ ✔❶ (arg(z − 1) = 0) ❵➩➫✇▼✱ ⑧ ✰ ✠❶ (arg(z − 1) = 4π) ✩ ✱✴✹ ô➭✧ ✂ ➫➯ Riemann ▼ (✥❀ 2.6) ✴⑤ t ✕✖ w = √ z − 1 ❽ √ z − a ✗ ö ❏ ➫➯ Riemann ▼ ✔ ✱ z P❵ w ▲▼✔ ✱ P★❳❳⑤ ✪ ✱✴
<<向上翻页向下翻页>>
©2008-现在 cucdc.com 高等教育资讯网 版权所有