正在加载图片...
00=og41g 6 Cov(XY)=E(XY)-E(X)E(Y) 0x024+1x0 +0×1× 36 +1×1× 36 所以Pg=0 (2)联合分布律为 Y X O 1 P.i 10 66 66 6 10 66 66 6 Pi. 6 6 EX)= 6 0m-0021001wG- 11 66 Co()=E()-EX)E)=-'x1 666*6396 6 E) 所以D(X)= 6 5 66 D0-36 5 5 Cov(XY) Px= √DX)NDY) 36= =55 1=-0.091 V36V36 例7设连续型随机变量(X,Y)的概率密度为 f(x,y)= 12y20≤y≤x≤ 10 其它 ,求Pn 解x)=mfx,y)= 12y=4x0≤x≤1 0 其它 5 1 1 ( ) 0 1 6 6 6 E X =  +  = 5 1 1 ( ) 0 1 6 6 6 E Y =  +  = Cov XY E XY E X E Y ( ) ( ) ( ) ( = − ) 25 5 5 1 1 1 0 0 1 0 0 1 1 1 0 36 36 36 36 6 6 =   +   +   +    - = 所以 0  XY = (2) 联合分布律为 Y X 0 1 j p 0 45 66 10 66 5 6 1 10 66 1 66 1 6 i p 5 6 1 6 1 ( ) 6 E X = 1 ( ) 6 E Y = 45 10 10 1 1 ( ) 0 0 1 0 0 1 1 1 66 66 66 66 66 E XY =   +   +   +   = 1 1 5 ( ) ( ) ( ) ( 6 6 396 Cov XY E XY E X E Y = − −  = − 1 )= 66 2 2 1 1 ( ) 1 6 6 E X  +  = 2 5 =0 6 2 1 ( ) 6 E Y = 所以 1 1 5 2 ( ) ( ) 6 6 36 D X = − = 5 ( ) 36 D Y = 5 ( ) 1 396 0.091 ( ) ( ) 5 5 11 36 36 XY Cov XY D X D Y  − = = = − = − 例7 设连续型随机变量 (X Y, ) 的概率密度为 2 12 0 1 ( ) 0 y y x f x y     =   , 其它 ,求  XY 。 解 2 3 0 12 4 0 1 ( ) ( , ) 0 x x y dy x x f x f x y dy + −   =   = =     其它
<<向上翻页向下翻页>>
©2008-现在 cucdc.com 高等教育资讯网 版权所有