正在加载图片...
第2期 朱大奇,等:生物启发AUV三维轨迹跟踪控制算法 .185. 小于传统反步跟踪控制,以图5(a)的前向速度为 [7]LIONEL L,BRUNO J.Robust nonlinear path-following con- 例,在跟踪开始的698s拐点处,传统反步跟踪达到 trol of AUV [J].IEEE Journal of Oceanic Engineering, 1.267m/s,而生物启发跟踪的控制速度仅为1.016 2008,33(2):89-102. m/s,其他拐点处同样可以看出生物启发跟踪的控 [8]高剑,徐德民,严卫生.基于级联方法的欠驱动AUV全局 制速度跳变远小于传统反步跟踪控制,针对欠驱动 K指数3维直线跟踪控制[J].控制与决策,2012,27 (9):1281-1287. 水下机器人系统来说,短时间内较大的速度变化,意 GAO Jian,XU Demin,YAN Weisheng.Global K-exponen- 味着需要产生较大加速度,这时机器人需要提供足 tial straight-line tracking control of an underactuated AUV in 够的推力,但实际的水下机器人其推力有限,常常无 3 dimensions using a cascaded approach[J].Control and 法满足这一要求。生物启发模型的加入较好克服了 Decision,2012,27(9):1281-1287 控制控制的速度跳变,从而较好地实现水下机器人 [9]廖煜雷,庞永杰,马伟佳,等喷水推进无人水面艇直线航 轨迹跟踪。 迹系统的反步自适应滑模控制[J].高技术通讯,2013, 23(1):79-84. 4结束语 LIAO Yulei,PANG Yongjie,MA Weijia,et al.Backstepping 通过对于三维折线轨迹进行仿真研究,分别比 adaptive sliding-mode control for the straight-line trajectory 较了传统反步控制与生物启发方法在海流环境下的 system of water-jet-propelled unmanned surface vessels[J]. Chinese High Technology Letters,2013,23(1):79-84. AUV跟踪控制效果,可以看到生物启发方法在跟踪 [10]唐旭东,庞永杰,李晔,等.基于混沌过程神经元的水下 效果上要优于传统反步方法,同时很好解决了反步 机器人运动控制方法[J].控制与决策.2010.25(2): 方法的速度跳变问题,显示了很好的控制性能,同时 213-217. 在本文基础上可以进一步考虑将运动学控制扩展到 TANG Xudong,PANG Yongjie,LI Ye,et al.Chaotic 动力学控制。 process neuron control for AUVs[J].Control and Deci- sion,2010,25(2):213-217. 参考文献: [11]YANG S X,ZHU A.A bioinspired neurodynamics based [1]贾鹤鸣,程相勤,张利军,等.基于离散滑模预测的欠驱动 approach to tracking control of mobile robots[J].IEEE AUV三维航迹跟踪控制[J].控制与决策,2011,26 Transactions on Industrial Electronics,2012,59 (8): 3211-3220. (10):1452-1458 JIA Heming,CHENG Xiangqin,ZHANG Lijun,et al. [12]马岭,崔维成.NTSM控制的AUV路径跟踪控制研究 Three-dimensional path tracking control for an underactuated [J].中国造船,2006,47(4):77-82. AUV based on discrete-time sliding mode prediction[J]. MA Ling,CUI Weicheng.Path following control study of Control and Decision,2011,26(10):1452-1458. an autonomous underwater vehicle controlled by non-singu- [2]王芳,万磊,李晔,等.欠驱动AUV的运动控制技术综述 lar terminal sliding mode[J].Shipbuilding of China, [J].中国造船,2010,51(2):227.241. 2006,47(4):77-82. [13]SANTHAKUMAR M,ASOKAN T.Investigations on the WANG Fang,WAN Lei,LI Ye,et al.A survey on develop- ment of motion control for underactuated AUV[J].Ship- hybrid tracking control of an underactuated autonomous building of China,2010,51(2):227-241. underwater robot J].Advanced Robotics,2010,24 [3]TSAI P S,WANG L S,CHANG F R.Systematic backstep- (11):1529-1556 [14]边宇枢,高志慧,负超.6自由度水下机器人动力学分析 ping design for b-spline trajectory tracking control of the mo- 与运动控制[J].机械工程学报,2007,43(7):87-92. bile robot in hierarchical model [C]//IEEE International BIAN Yushu,GAO Zhihui,YUN Chao.Dynamic analysis Conference on Networking,Sensing and Control.Taipei, China,2004:713-718. and motion control of 6-DOF underwater robot[J].Chinese [4]WALLACE M B,MAX S D.EDWIN K.Depth control of re- Journal of Mechanical Engineering,2007,43(7):87-92. motely operated underwater vehicles using an adaptive fuzzy [15]SIMON X Y,LUO C.A neural network approach to com- sliding mode controller[J].Robotics and Autonomous Sys- plete coverage path planning[J].IEEE Transactions on tems,2008.56(8):670-677 Systems,Man,and Cybernetics,Part B:Cybernetics, [5]BAGHERI A,MOGHADDAM JJ.Simulation and tracking 2004,34(1):718-725 作者简介: control based on neural-network strategy and sliding-mode 朱大奇,男,1964年生,教授,博士 control for underwater remotely operated vehicle[J].Neuro- computing,2009.72(8):1934-1950. 生导师,主要研究方向为智能故障诊 [6]JON E R.ASGEIR J S,KRISTIN Y P.Model-based output 断、水下机器人路径规划与控制。主持 国家863计划、国家自然科学基金等项 feedback control of slender-body underactuated AUVs:theo- 目20余项.发表学术论文100余篇,出 ry and experiments[J].IEEE Transactions on Control Sys- tems Technolog,2008,16(5):930-946. 版专著及教材5部。小于传统反步跟踪控制,以图 5( a) 的前向速度为 例,在跟踪开始的 698 s 拐点处,传统反步跟踪达到 1.267 m / s,而生物启发跟踪的控制速度仅为 1.016 m / s,其他拐点处同样可以看出生物启发跟踪的控 制速度跳变远小于传统反步跟踪控制,针对欠驱动 水下机器人系统来说,短时间内较大的速度变化,意 味着需要产生较大加速度,这时机器人需要提供足 够的推力,但实际的水下机器人其推力有限,常常无 法满足这一要求。 生物启发模型的加入较好克服了 控制控制的速度跳变,从而较好地实现水下机器人 轨迹跟踪。 4 结束语 通过对于三维折线轨迹进行仿真研究,分别比 较了传统反步控制与生物启发方法在海流环境下的 AUV 跟踪控制效果,可以看到生物启发方法在跟踪 效果上要优于传统反步方法,同时很好解决了反步 方法的速度跳变问题,显示了很好的控制性能,同时 在本文基础上可以进一步考虑将运动学控制扩展到 动力学控制。 参考文献: [1]贾鹤鸣,程相勤,张利军,等.基于离散滑模预测的欠驱动 AUV 三维航迹跟踪控制 [ J]. 控制与决策, 2011, 26 (10): 1452⁃1458. JIA Heming, CHENG Xiangqin, ZHANG Lijun, et al. Three⁃dimensional path tracking control for an underactuated AUV based on discrete⁃time sliding mode prediction [ J]. Control and Decision, 2011, 26(10): 1452⁃1458. [2]王芳,万磊,李晔,等.欠驱动 AUV 的运动控制技术综述 [J].中国造船, 2010, 51(2): 227⁃ 241. WANG Fang, WAN Lei, LI Ye, et al. A survey on develop⁃ ment of motion control for underactuated AUV [ J]. Ship⁃ building of China, 2010, 51(2): 227⁃241. [3]TSAI P S, WANG L S, CHANG F R. Systematic backstep⁃ ping design for b⁃spline trajectory tracking control of the mo⁃ bile robot in hierarchical model [ C] / / IEEE International Conference on Networking, Sensing and Control. Taipei, China, 2004: 713⁃718. [4]WALLACE M B, MAX S D. EDWIN K. Depth control of re⁃ motely operated underwater vehicles using an adaptive fuzzy sliding mode controller[ J]. Robotics and Autonomous Sys⁃ tems, 2008, 56(8): 670⁃677. [5]BAGHERI A, MOGHADDAM J J. Simulation and tracking control based on neural⁃network strategy and sliding⁃mode control for underwater remotely operated vehicle[J]. Neuro⁃ computing, 2009, 72(8): 1934⁃1950. [6]JON E R, ASGEIR J S, KRISTIN Y P. Model⁃based output feedback control of slender⁃body underactuated AUVs: theo⁃ ry and experiments[ J]. IEEE Transactions on Control Sys⁃ tems Technology, 2008, 16(5): 930⁃946. [7]LIONEL L, BRUNO J. Robust nonlinear path⁃following con⁃ trol of AUV [ J]. IEEE Journal of Oceanic Engineering, 2008, 33(2): 89⁃102. [8]高剑,徐德民,严卫生.基于级联方法的欠驱动 AUV 全局 K 指数 3 维直线跟踪控制[ J]. 控制与决策, 2012, 27 (9): 1281⁃1287. GAO Jian, XU Demin, YAN Weisheng. Global K⁃exponen⁃ tial straight⁃line tracking control of an underactuated AUV in 3 dimensions using a cascaded approach [ J]. Control and Decision, 2012, 27(9): 1281⁃1287. [9]廖煜雷,庞永杰,马伟佳,等.喷水推进无人水面艇直线航 迹系统的反步自适应滑模控制[ J]. 高技术通讯, 2013, 23(1): 79⁃84. LIAO Yulei,PANG Yongjie,MA Weijia, et al. Backstepping adaptive sliding⁃mode control for the straight⁃line trajectory system of water⁃jet⁃propelled unmanned surface vessels[ J]. Chinese High Technology Letters, 2013, 23(1): 79⁃ 84. [10]唐旭东,庞永杰,李晔,等. 基于混沌过程神经元的水下 机器人运动控制方法[ J]. 控制与决策,2010, 25(2): 213⁃217. TANG Xudong, PANG Yongjie, LI Ye, et al. Chaotic process neuron control for AUVs [ J]. Control and Deci⁃ sion, 2010, 25(2):213⁃217. [11]YANG S X , ZHU A. A bioinspired neurodynamics based approach to tracking control of mobile robots [ J]. IEEE Transactions on Industrial Electronics, 2012, 59 ( 8 ): 3211⁃3220. [12]马岭,崔维成. NTSM 控制的 AUV 路径跟踪控制研究 [J]. 中国造船, 2006, 47(4): 77⁃82. MA Ling, CUI Weicheng. Path following control study of an autonomous underwater vehicle controlled by non⁃singu⁃ lar terminal sliding mode [ J ]. Shipbuilding of China, 2006, 47(4): 77⁃82. [13] SANTHAKUMAR M, ASOKAN T. Investigations on the hybrid tracking control of an underactuated autonomous underwater robot [ J ]. Advanced Robotics, 2010, 24 (11): 1529⁃1556. [14]边宇枢,高志慧,贠超. 6 自由度水下机器人动力学分析 与运动控制[J].机械工程学报, 2007, 43(7): 87⁃ 92. BIAN Yushu, GAO Zhihui, YUN Chao. Dynamic analysis and motion control of 6⁃DOF underwater robot[J]. Chinese Journal of Mechanical Engineering, 2007, 43(7): 87⁃ 92. [15]SIMON X Y, LUO C. A neural network approach to com⁃ plete coverage path planning [ J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 2004, 34(1): 718⁃725. 作者简介: 朱大奇,男 ,1964 年生,教授,博士 生导师,主要研究方向为智能故障诊 断、水下机器人路径规划与控制。 主持 国家 863 计划、国家自然科学基金等项 目 20 余项,发表学术论文 100 余篇,出 版专著及教材 5 部。 第 2 期 朱大奇,等: 生物启发 AUV 三维轨迹跟踪控制算法 ·185·
<<向上翻页
©2008-现在 cucdc.com 高等教育资讯网 版权所有