定理2n元非齐次线性方程组Ax=b有解 的充分必要条件是系数矩阵A的秩等于增广矩 阵B=(Ab)的秩 证必要性.设方程组Ax=b有解, 设R(4)<R(B 则硝行阶梯形矩阵中最后一个非零行对应矛盾 方程0=1, 这与方程组有解相矛盾因此R(4)=R(B)证 必要性.设方程组 Ax = b 有解, 设R(A) R(B), 则B的行阶梯形矩阵中最后一个非零行对应矛盾 方程0=1, ( , ) . 2 阵 的 秩 的充分必要条件是系数矩 阵 的秩等于增广矩 定 理 元非齐次线性方程组 有 解 B A b A n Am n x b = = 这与方程组有解相矛盾.因此 R(A)= R(B)