(5) lim(+x)"-Is lim Cnx+( (6)lim (1+mx)"-(1+mx) lim (+nmx+Camx+.+mx)-(1+mnx+Cmn'x++n"x x-)0 nm(n-m)o x+a.x-a (7) lim sin x-sin a=limo -sin- = coSa o 8)lim lim I-coSx (9)lim cosx-cOS5x 2sin 4xsin 2 4 2 sin xsin (10)lim tanx-sinx lim 3.利用夹逼法求极限 (1) lim (2) 解(1)x>0,当<xx-,有一”<x1≤1。由lmn=1,可知 mnx/=1。r<O,当、 n+1 n+1 n→∞n+1 <X≤ -",由 H→0n 可知2x/=1。由此得到 lin x-0 (2)当n≤x<n+1,有n 由lim 与 得到 1 4.利用夹逼法证明 (1)limx=0(a>1,k为任意正整数 (2)llnx=0(k为任意正整数(5)lim x→0 = + − x x n (1 ) 1 lim x→0 = + + + x C x C x x n n 1 n 2 2 " n。 (6)lim x→0 2 (1 ) (1 ) x mx nx n m + − + 0 lim → = x 2 2 2 2 2 2 2 (1 ) (1 ) x nmx C m x m x mnx C n x n x m m m n n + + n +"+ − + + +"+ ( ) 2 1 = nm n − m 。 (7)lim x a → = − − x a sin x sin a lim x a → x a x a x a − + − 2 sin 2 2cos = cosa。 (8)lim x→0 = − x x 1 cos 2 lim x→0 = ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ 2 2sin2 2 x x 2。 (9)lim x→0 = − 2 cos cos3 x x x lim x→0 = 2 2sin 4 sin 2 x x x 4。 (10)lim x→0 = − 3 tan sin x x x lim x→0 = ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ x x x x cos 2 2sin sin 3 2 2 1 。 3. 利用夹逼法求极限: ⑴ limx→0 ⎥ ⎦ ⎤ ⎢ ⎣ ⎡ x x 1 ; ⑵ limx→+∞ x x 1 。 解(1)∀x > 0,当 n x n 1 1 1 < ≤ + ,有 1 1 1 ≤⎥ ⎦ ⎤ ⎢ ⎣ ⎡ < + x x n n 。由 1 1 lim = →∞ n + n n ,可知 →0+ lim x 1 1 =⎥ ⎦ ⎤ ⎢ ⎣ ⎡ x x 。∀x < 0,当 1 1 1 + − < ≤ − n x n ,有 n n x x 1 1 1 + <⎥ ⎦ ⎤ ⎢ ⎣ ⎡ ≤ 。由 1 1 lim = + →∞ n n n , 可知 →0− lim x 1 1 =⎥ ⎦ ⎤ ⎢ ⎣ ⎡ x x 。由此得到 0 lim x→ 1 1 =⎥ ⎦ ⎤ ⎢ ⎣ ⎡ x x 。 (2)当n ≤ x < n +1,有 n x n n x n 1 1 1 1 < < ( +1) + 。由n→∞ lim 1 1 1 = n+ n 与n→∞ lim ( 1) 1 1 + = n n , 得到 limx→+∞ 1 1 = x x 。 4. 利用夹逼法证明: (1) limx→+∞ x k a x = 0 (a>1,k 为任意正整数); (2) limx→+∞ lnk x x = 0 (k 为任意正整数)。 36