正在加载图片...
赵义伟等:一种描述减振器滞回特性的Bouc-Wen改进模型 ·1361· 30(9):4157 [18]Zhong G Q,Zhou Y,Li L J,et al.Parameter identification of BRB [7]Dutta S,Chakraborty G.Performance analysis of nonlinear based on improved Bouc-Wen model using GSO algorithm.J vibration isolator with magneto-rheological damper.Sound Vib, Building Struct,2018,39(Suppl1):387 2014,333(20):5097 (钟根全,周云,李丽娟,等.基于GSO算法的BRB改进Bouc-Wen [8] Wen Y K.Equivalent linearization for hysteretic systems under 模型参数识别.建筑结构学报,2018,39(增刊1:387) random excitation.J Appl Mech,1980,47(1):150 [19]Yao GZ.Yap FF,Chen G,et al.MR damper and its application [PengZL,Zhou CG.Research on modeling of nonlinear vibration for semi-active control of vehicle suspension system isolation system based on Bouc-Wen model.Defence Technol. Mechatronics,2002,12(7):963 2014.10(4):371 [20]Liu Y Q,Yang S P,Liao YY.A new method of parameter [10]Stanway R,Sproston JL,Stevens N G.Non-linear modelling of an identification for magnetorheological damper model.J Mech Eng, electro-rheological vibration damper.J Electrostatics,1987 2018.54(6):62 20(2):167 (刘永强,杨绍普,廖英英.一种磁流变阻尼器模型参数识别新 [11]Guneyisi E,Gesoglu M,Naji N,et al.Evaluation of the rheological 方法.机械工程学报,2018,54(6):62) behavior of fresh self-compacting rubberized concrete by using the [21]Ni YQ,Ko J M,Wong C W.Nonparametric identification of Herschel-Bulkley and modified Bingham models.Arch Civil Mech nonlinear hysteretic systems.J Eng Mech,1999,125(2):206 Emg,2016,16(1):9 [22]Peng J Y,Li H,Susuki Y.Modeling of nonlinear hysteresis with [12]Jeong S W.Determining the viscosity and yield surface of marine pinching.J Shenyang Jianhu Univ Nat Sci,2005,21(4):325 sediments using modified Bingham models.Geosciences J,2013, (彭君义,李惠,铃木祥之.非线性滑移滞回模型建模.沈阳建筑 17(3):241 大学学报:自然科学版,2005,21(4):325) [13]Tumip A,Hong K S,Park S.Control of a semi-active MR-damper [23]Liu Y Q,Yang S P,Liao YY,et al.Parameter identification of suspension system:A new polynomial model.IFAC Proc Bouc-wen model for MR damper based on genetic algorithm./ Volumes,2008,41(2:4683 Vib Shock,2011,30(7):261 [14]Duan M,Su HH.Polynomial model research on automobiles magneto-rheological damper.JLiaoning Inst Technol Nat Sci Ed, (刘永强,杨绍普,廖英英,等.基于遗传算法的磁流变阻尼器 Bouc-Wen模型参数辨识.振动与冲击,2011,30(7):261) 2010,30(6):377 (段敏,苏海华.汽车磁流变减振器多项式模型的研究.辽宁工 [24]Liu W D,Liao YY,Liu Y Q.Parameter identifying of the rubber 业大学学报:自然科学版,2010,30(6):377) damper hysteresis loop based on GA-PS.J Shijiazhuang Tiedao [15]Lau Y K.Liao W H.Design and analysis of magnetorheological Univ Nat Sci Ed,2017,30(4):46 dampers for train suspension.Proc Inst Mech Eng Part FJ Rail (刘伟栋,廖英英,刘永强.基于GA-PS的轨道橡胶隔振器滞回 Rapid Transit,,2005,219(4):上261 模型参数识别.石家庄铁道大学学报:自然科学版,2017, [16]Peng G R,Li W H,Du H,et al.Modelling and identifying the 30(4):46) parameters of a magneto rheological damper with a force-lag [25]Liao YY,Liu Y Q,Liu J X,et al.MRD model parameter phenomenon.Appl Math Model,2014,38(15-16):3763 identification and its application in vibration control of vehicle.J [17]Wang WR,Wu C,Chen Y,et al.Modified Bouc-Wen model Vib Meas Diagn,2012,32(2):223 based on hysteretic characteristics experiment of magneto- (廖英英,刘永强,刘金喜,等.MRD模型参数识别及其在振动控 rheological damper.Trans Chin Soc Agric Machinery,2011, 制中的应用.振动、测试与诊断,2012,32(2):223) 42(2):48 [26]Liu Y Q,Yang S P,Liao YY.A quantizing method for determ- (王维锐,吴参,陈颖,等.磁流变减振器滞回特性的改进 ination of controlled damping parameters of magnetorheological Bouc-Wen模型.农业机械学报,2011,42(2):48) damper models.J Intell Mater Syst Struct,2011,22(18):212730(9): 4157 Dutta  S,  Chakraborty  G.  Performance  analysis  of  nonlinear vibration isolator with magneto-rheological damper. J Sound Vib, 2014, 333(20): 5097 [7] Wen  Y  K.  Equivalent  linearization  for  hysteretic  systems  under random excitation. J Appl Mech, 1980, 47(1): 150 [8] Peng Z L, Zhou C G. Research on modeling of nonlinear vibration isolation  system  based  on  Bouc –Wen  model. Defence Technol, 2014, 10(4): 371 [9] Stanway R, Sproston J L, Stevens N G. Non-linear modelling of an electro-rheological  vibration  damper. J Electrostatics,  1987, 20(2): 167 [10] Guneyisi E, Gesoglu M, Naji N, et al. Evaluation of the rheological behavior of fresh self-compacting rubberized concrete by using the Herschel–Bulkley and modified Bingham models. Arch Civil Mech Eng, 2016, 16(1): 9 [11] Jeong S W. Determining the viscosity and yield surface of marine sediments using modified Bingham models. Geosciences J, 2013, 17(3): 241 [12] Turnip A, Hong K S, Park S. Control of a semi-active MR-damper suspension  system:  A  new  polynomial  model. IFAC Proc Volumes, 2008, 41(2): 4683 [13] Duan  M,  Su  H  H.  Polynomial  model  research  on  automobiles magneto-rheological damper. J Liaoning Inst Technol Nat Sci Ed, 2010, 30(6): 377 (段敏, 苏海华. 汽车磁流变减振器多项式模型的研究. 辽宁工 业大学学报: 自然科学版, 2010, 30(6):377) [14] Lau Y K, Liao W H. Design and analysis of magnetorheological dampers  for  train  suspension. Proc Inst Mech Eng Part F J Rail Rapid Transit, 2005, 219(4): 261 [15] Peng  G  R,  Li  W  H,  Du  H,  et  al.  Modelling  and  identifying  the parameters  of  a  magneto  rheological  damper  with  a  force-lag phenomenon. Appl Math Model, 2014, 38(15-16): 3763 [16] Wang  W  R,  Wu  C,  Chen  Y,  et  al.  Modified  Bouc –Wen  model based  on  hysteretic  characteristics  experiment  of  magneto￾rheological  damper. Trans Chin Soc Agric Machinery,  2011, 42(2): 48 (王维锐, 吴参, 陈颖, 等. 磁流变减振器滞回特性的改进 Bouc–Wen模型. 农业机械学报, 2011, 42(2):48) [17] Zhong G Q, Zhou Y, Li L J, et al. Parameter identification of BRB based  on  improved  Bouc –Wen  model  using  GSO  algorithm. J Building Struct, 2018, 39(Suppl1): 387 (钟根全, 周云, 李丽娟, 等. 基于GSO算法的BRB改进Bouc–Wen 模型参数识别. 建筑结构学报, 2018, 39(增刊1): 387) [18] Yao G Z, Yap F F, Chen G, et al. MR damper and its application for  semi-active  control  of  vehicle  suspension  system. Mechatronics, 2002, 12(7): 963 [19] Liu  Y  Q,  Yang  S  P,  Liao  Y  Y.  A  new  method  of  parameter identification for magnetorheological damper model. J Mech Eng, 2018, 54(6): 62 (刘永强, 杨绍普, 廖英英. 一种磁流变阻尼器模型参数识别新 方法. 机械工程学报, 2018, 54(6):62) [20] Ni  Y  Q,  Ko  J  M,  Wong  C  W.  Nonparametric  identification  of nonlinear hysteretic systems. J Eng Mech, 1999, 125(2): 206 [21] Peng J Y, Li H, Susuki Y. Modeling of nonlinear hysteresis with pinching. J Shenyang Jianzhu Univ Nat Sci, 2005, 21(4): 325 (彭君义, 李惠, 铃木祥之. 非线性滑移滞回模型建模. 沈阳建筑 大学学报: 自然科学版, 2005, 21(4):325) [22] Liu  Y  Q,  Yang  S  P,  Liao  Y  Y,  et  al.  Parameter  identification  of Bouc –wen  model  for  MR  damper  based  on  genetic  algorithm. J Vib Shock, 2011, 30(7): 261 (刘永强, 杨绍普, 廖英英, 等. 基于遗传算法的磁流变阻尼器 Bouc–Wen模型参数辨识. 振动与冲击, 2011, 30(7):261) [23] Liu W D, Liao Y Y, Liu Y Q. Parameter identifying of the rubber damper  hysteresis  loop  based  on  GA –PS. J Shijiazhuang Tiedao Univ Nat Sci Ed, 2017, 30(4): 46 (刘伟栋, 廖英英, 刘永强. 基于GA–PS的轨道橡胶隔振器滞回 模型参数识别. 石家庄铁道大学学报: 自然科学版), 2017, 30(4):46) [24] Liao  Y  Y,  Liu  Y  Q,  Liu  J  X,  et  al.  MRD  model  parameter identification and its application in vibration control of vehicle. J Vib Meas Diagn, 2012, 32(2): 223 (廖英英, 刘永强, 刘金喜, 等. MRD模型参数识别及其在振动控 制中的应用. 振动、测试与诊断, 2012, 32(2):223) [25] Liu Y Q, Yang S P, Liao Y Y. A quantizing method for determ￾ination  of  controlled  damping  parameters  of  magnetorheological damper models. J Intell Mater Syst Struct, 2011, 22(18): 2127 [26] 赵义伟等: 一种描述减振器滞回特性的 Bouc–Wen 改进模型 · 1361 ·
<<向上翻页
©2008-现在 cucdc.com 高等教育资讯网 版权所有