正在加载图片...
工程科学学报.第42卷,第11期:1465-1472.2020年11月 Chinese Journal of Engineering,Vol.42,No.11:1465-1472,November 2020 https://doi.org/10.13374/j.issn2095-9389.2019.11.28.007;http://cje.ustb.edu.cn 电解制备含钪铝合金三元相超声细化机制 刘轩2),郭志超2),薛济来12区,王曾洁),李想2),朱常伟2),张鹏举1,2) 1)北京科技大学治金与生态工程学院,北京1000832)北京科技大学钢铁冶金国家重点实验室,北京1000833)北京工业大学材料科学 与工程学院.北京100124 ☒通信作者,E-mail:jx@ustb.edu.cn 摘要研究采用超声协同熔盐电解法制备A-Si-Sc和Al-Cu-Sc合金,采用光学显微镜、扫描电镜和X射线衍射研究超 声对合金中三元含钪强化相形貌与尺寸的影响,进而阐明超声细化机制.研究结果表明.协同超声促使三元A1SSc相由粗大 菱形管状转变为细小实心方棒状,其尺寸由205减小到40m左右:超声显著细化三元AlCuSc相团簇尺寸,由约100减小至 约30u;超声协同细化机制主要是通过提高形核率细化初生AlSc相并促进其均匀分布,进而作为形核发育基底,最终实现 三元含钪相细化:同时超声也可促进合金溶质均匀分布,避免粗大A1Sc相析出;超声细化三元含钪相机制主要作用于电解 后凝固阶段 关键词含钪铝合金:三元强化相:超声协同:熔盐电解法:细化机理 分类号TF82.1 Ultrasonic refining mechanism of ternary phase in Al-Sc based alloys prepared through molten salt electrolysis LIU Xuan2 GUO Zhi-chao2),XUE Ji-lai2.WANG Zeng-jie,LI Xiang,ZHU Chang-wei2),ZHANG Peng-ju2) 1)School of Metallurgical and Ecological Engineering,University of Science and Technology Beijing,Beijing 100083,China 2)State Key Laboratory of Advanced Metallurgy,University of Science and Technology Beijing,Beijing 100083,China 3)College of Material Science and Engineering,Beijing University of Technology,Beijing 100124,China Corresponding author,E-mail:jx@ustb.edu.cn ABSTRACT Aluminum alloys are widely used in cutting-edge technologies and emerging strategic industries,namely aerospace,high- speed rail transportation,electric vehicles,advanced functional materials,new energy storage,and conversion devices.The processability as well as the mechanical properties of aluminum alloys can be improved via the addition of trace scandium.The ultrasonically assisted molten salt electrolysis is a promising,short technical route for large-scale preparation of low-cost,Al-Sc-based alloys characterized by uniform and fine strengthening phases.At present,it is still unclear if that is the case for the ultrasonic refining mechanism of the Sc-bearing ternary phase.This study aims at clarifying the ultrasonic refining mechanism on the strengthening phase containing scandium.Two Al-Sc based alloys were prepared using ultrasonically assisted molten salt electrolysis while the effect of ultrasound on the morphology and size of the Sc-bearing ternary phase was studied using optical microscope,scanning electron microscope,and X-ray diffraction meter.The results show that the synergetic ultrasound facilitates the transformation of the ternary AlSiSc phase from the coarse rhombic tubes(~205 um)to the short rod(40 um).The cluster size of ternary AlCuSc phase is also greatly reduced from ~100 um to ~30 um.The ultrasonic refining mechanism is mainly related to the increase of the nucleation rate of the primary Al3Sc particles which are greatly refined and dispersed in the alloy melt before the solidification stage.The refinement of the Sc- 收稿日期:2019-11-28 基金项目:国家自然科学基金资助项目(51704020,51874035):中央高校基本科研业务费资助项目(FRF-TP.19-034A2)电解制备含钪铝合金三元相超声细化机制 刘    轩1,2),郭志超1,2),薛济来1,2) 苣,王曾洁3),李    想2),朱常伟1,2),张鹏举1,2) 1) 北京科技大学冶金与生态工程学院,北京 100083    2) 北京科技大学钢铁冶金国家重点实验室,北京 100083    3) 北京工业大学材料科学 与工程学院,北京 100124 苣通信作者,E-mail: jx@ustb.edu.cn 摘    要    研究采用超声协同熔盐电解法制备 Al–Si–Sc 和 Al–Cu–Sc 合金,采用光学显微镜、扫描电镜和 X 射线衍射研究超 声对合金中三元含钪强化相形貌与尺寸的影响,进而阐明超声细化机制. 研究结果表明,协同超声促使三元 AlSiSc 相由粗大 菱形管状转变为细小实心方棒状,其尺寸由 205 减小到 40 μm 左右;超声显著细化三元 AlCuSc 相团簇尺寸,由约 100 减小至 约 30 μm;超声协同细化机制主要是通过提高形核率细化初生 Al3Sc 相并促进其均匀分布,进而作为形核发育基底,最终实现 三元含钪相细化;同时超声也可促进合金溶质均匀分布,避免粗大 Al3Sc 相析出;超声细化三元含钪相机制主要作用于电解 后凝固阶段. 关键词    含钪铝合金;三元强化相;超声协同;熔盐电解法;细化机理 分类号    TF82.1 Ultrasonic refining mechanism of ternary phase in Al–Sc based alloys prepared through molten salt electrolysis LIU Xuan1,2) ,GUO Zhi-chao1,2) ,XUE Ji-lai1,2) 苣 ,WANG Zeng-jie3) ,LI Xiang2) ,ZHU Chang-wei1,2) ,ZHANG Peng-ju1,2) 1) School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083, China 2) State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, Beijing 100083, China 3) College of Material Science and Engineering, Beijing University of Technology, Beijing 100124, China 苣 Corresponding author, E-mail: jx@ustb.edu.cn ABSTRACT    Aluminum alloys are widely used in cutting-edge technologies and emerging strategic industries, namely aerospace, high￾speed  rail  transportation,  electric  vehicles,  advanced  functional  materials,  new  energy  storage,  and  conversion  devices.  The processability  as  well  as  the  mechanical  properties  of  aluminum  alloys  can  be  improved via the  addition  of  trace  scandium.  The ultrasonically assisted molten salt electrolysis is a promising, short technical route for large-scale preparation of low-cost, Al–Sc-based alloys characterized by uniform and fine strengthening phases. At present, it is still unclear if that is the case for the ultrasonic refining mechanism of the Sc-bearing ternary phase. This study aims at clarifying the ultrasonic refining mechanism on the strengthening phase containing scandium. Two Al –Sc based alloys were prepared using ultrasonically assisted molten salt electrolysis while the effect of ultrasound  on  the  morphology  and  size  of  the  Sc-bearing  ternary  phase  was  studied  using  optical  microscope,  scanning  electron microscope,  and  X-ray  diffraction  meter.  The  results  show  that  the  synergetic  ultrasound  facilitates  the  transformation  of  the  ternary AlSiSc phase from the coarse rhombic tubes (~205 μm) to the short rod (40 μm). The cluster size of ternary AlCuSc phase is also greatly reduced  from  ~100  μm  to  ~30  μm.  The  ultrasonic  refining  mechanism  is  mainly  related  to  the  increase  of  the  nucleation  rate  of  the primary Al3Sc particles which are greatly refined and dispersed in the alloy melt before the solidification stage. The refinement of the Sc- 收稿日期: 2019−11−28 基金项目: 国家自然科学基金资助项目(51704020,51874035);中央高校基本科研业务费资助项目(FRF-TP-19-034A2) 工程科学学报,第 42 卷,第 11 期:1465−1472,2020 年 11 月 Chinese Journal of Engineering, Vol. 42, No. 11: 1465−1472, November 2020 https://doi.org/10.13374/j.issn2095-9389.2019.11.28.007; http://cje.ustb.edu.cn
<<向上翻页向下翻页>>
©2008-现在 cucdc.com 高等教育资讯网 版权所有