正在加载图片...
A四=LA (1 A=LA 依此类推,进行到第(r-1)步,则可得到 (r2)(r2) A们)= a( 2) Mr (r=2,3,…,n1) 则A的r阶顺序主子式4=aa2…aa0,若4≠0,则a0≠0 (r1) 可定义cn= 并构造 frobenius矩阵 r+1                2 32 n2 1 1 L = c c 1 →                 -1 2 32 n2 1 1 L = -c -c 1                 (0) (0) (0) (0) 11 12 13 1n (1) (1) (1) 22 23 2n (2) -1 (1) (2) (2) 2 33 3n (2) (2) n3 nn a a a a a a a A = L A = a a a a → (1) (2) 2 A = L A 依此类推,进行到第(r-1)步,则可得到                   (0) (0) (0) (0) 11 1r-1 1r 1n (r-2) (r-2) (r-2) (r-1) r-1r-1 r-1r r-1n (r-1) (r-1) rr rn (r-1) (r-1) nr nn a a a a a a a A = a a a a (r=2,3, ,n-1) 则 A 的 r 阶顺序主子式 (0) (1) (r-2) (r-1) Δr 11 22 r-1r-1 rr = a a a a ,若 Δ r ≠0 ,则 (r-1) rr a ≠0 可定义 (r-1) ir ir (r-1) rr a c = a ,并构造 Frobenius 矩阵                   r r+11 nr 1 1 L = c 1 c 1 →                   -1 r r+11 nr 1 1 L = -c 1 -c 1
<<向上翻页向下翻页>>
©2008-现在 cucdc.com 高等教育资讯网 版权所有