点击切换搜索课件文库搜索结果(328)
文档格式:DOC 文档大小:154KB 文档页数:2
9-2C,R,Q上多项式的因式分解 9.2.1复数域、实数域上多项式的因式分解 定理(高等代数基本定理)复数域C上任意一个次数≥1的多项式在C内必有一个 根。 这个定理的证明是放在复变函数课程中完成的。 由高等代数基本定理,我们得到C[x]内多项式的因式分解的重要结论: 命题C[x]内一个次数≥1的多项式p(x)是不可约多项式的充分必要条件为它是一次 多项式。 证明在任一数域K上的一次多项式f(x)都是K[x]内的不可约多项式(因为 (f(x),f(x)=1)。现在假设p(x)是C[x]内的一个不可约多项式
文档格式:DOC 文档大小:97.5KB 文档页数:3
定义设A是数域K上一个n阶方阵,g(x)是K上一个m次多项式.如果g(A)=0,则g(x) 称为方阵A的一个化零多项式 Hamilton-Cayley-定理设A是数域K上的n阶方阵,f是A的特征多项式,则f(A)=0. 证明A在C内相 Jordan似于形矩阵J,即有c上可逆阵T使TAT=J显然对任意正 整数k
文档格式:DOC 文档大小:86KB 文档页数:2
定义 2 所谓数域 P 上一个 n 维向量就是由数域 P 中 n 个数组成的有序数组
文档格式:PDF 文档大小:129.02KB 文档页数:8
1.设f(x1,……,xn)是数域K上的m元齐次多项式 证明:如果存在数域K上的n元多项式g(x1,…,xn)与h(x1,…,xn),使 f(x1,…,xn)=g(x1,…,xn)h(x1,…,xn) 则g(x1,…,xn)与h(x1,…,xn)也都是齐次多项式 证明设degf=m,degg=k,degh=l.令
文档格式:PDF 文档大小:1.58MB 文档页数:136
一、数字滤波器的基本概念 二、最小与最大相位延时系统、最小与最大相位超前系统 三、全通系统 四、用模拟滤波器设计IIR数字滤波器 五、冲激响应不变法 六、阶跃响应不变法 七、双线性变换法 八、常用模拟低通滤波器特性 九、设计IIR滤波器的频率变换法 十、模拟域频带变换法 十一、数字域频带变换法
文档格式:PPT 文档大小:1.22MB 文档页数:8
定义: 设P是一个数域,元是一个文字,P是多项式环, 若矩阵A的元素是的多项式,即P2的元素,则 称A为九一矩阵,并把A写成A(4 注: ①∵PcPI孔],∴数域P上的矩阵一数字矩阵也 是一矩阵
文档格式:DOC 文档大小:101KB 文档页数:2
根据哈密尔顿一凯莱定理,任给数域P上一个级矩阵A,总可以找到数域 P上一个多项式f(x),使f(A)=0.如果多项式f(x)使f(A)=0,就称f(x)以A 为根当然,以为A根的多项式是很多的,其中次数最低的首项系数为1的以A为 根的多项式称为A的最小多项式这一节讨论应用最小多项式来判断一个矩阵能 否对角化的问题
文档格式:DOC 文档大小:1.26MB 文档页数:20
既约多项式:设 f(x)是次数大于 0 的多项 式,除了常数、常数与本身乘积以外, 不能再被域 F 上其他多项式除尽,则 f(x) 为 F 域上的既约多项式
文档格式:PPT 文档大小:927.5KB 文档页数:10
Methods (方法) 方法是语句的结合,方法中的语句可以访问 和修改类或类的对象中域,也可以使用域存 放的数据进行复杂的计算
文档格式:PDF 文档大小:98.07KB 文档页数:9
1.7有理数域上的多项式 定义7.1设f(x)是一个整系数多项式,若f(x)的系数 的公因子只有±1,则称f(x)是一个本原多项式. Gauss引理两个本原多项式的乘积仍为本原多项式. 证明设 f(x)=amx+…+a1x+a, g(x)=bnxn+…+bx+b 是两个本原多项式令
首页上页89101112131415下页末页
热门关键字
搜索一下,找到相关课件或文库资源 328 个  
©2008-现在 cucdc.com 高等教育资讯网 版权所有