点击切换搜索课件文库搜索结果(1223)
文档格式:PDF 文档大小:143.21KB 文档页数:9
Non-Inertial Reference Frame Gravitational attraction The Law of Universal Attraction was already introduced in lecture D1. The law postulates that the force of attraction between any two particles, of masses M and m, respectively, has a magnitude, F, given by F= (1) where r is the distance between the two particles, and G is the universal constant of gravitation. The value of G is empirically determined to be
文档格式:PDF 文档大小:96.83KB 文档页数:6
An accelerometer is a device used to measure linear acceleration without an external reference. The main idea has already been illustrated in the previous lecture with the example of the boy in the elevator. Clearly, if we know the weight of the boy when the acceleration is zero, we can determine from the reading on the scale the value of the acceleration. In summary, the acceleration will produce an inertial force on a test mass, and this force can be nulled and measured with precision. Below we have sketch of a very simple one axis accelerometer
文档格式:PDF 文档大小:120.88KB 文档页数:6
In this lecture, we will revisit the principle of work and energy introduced in lecture D7 for particle dynamics, and extend it to 2D rigid body dynamics. Kinetic Energy for a 2D Rigid Body We start by recalling the kinetic energy expression for a system of particles derived in lecture D17
文档格式:PDF 文档大小:99.43KB 文档页数:5
In lecture D9, we saw the principle of impulse and momentum applied to particle motion. This principle was of particular importance when the applied forces were functions of time and when interactions between particles occurred over very short times, such as with impact forces. In this lecture, we extend these principles to two dimensional rigid body dynamics. Impulse and Momentum Equations Linear Momentum In lecture D18, we introduced the equations of motion for a two dimensional rigid body. The linear momen- tum for a system of particles is defined
文档格式:PDF 文档大小:177.06KB 文档页数:6
In this lecture, we consider the motion of a 3D rigid body. We shall see that in the general three dimensional case, the angular velocity of the body can change in magnitude as well as in direction, and, as a consequence, the motion is considerably more complicated than that in two dimensions. Rotation About a Fixed Point We consider first the simplified situation in which the 3D body moves in such a way that there is always a point, O, which is fixed. It is clear that, in this case, the path of any point in the rigid body which is at a
文档格式:PDF 文档大小:109.02KB 文档页数:7
A pendulum is a rigid body suspended from a fixed point (hinge) which is offset with respect to the body's center of mass. If all the mass is assumed to be concentrated at a point, we obtain the idealized simple pendulum. Pendulums have played an important role in the history of dynamics. Galileo identified the pendulum as the first example of synchronous motion, which led to the first successful clock developed
文档格式:PDF 文档大小:1.08MB 文档页数:6
D244BD RIGID BODY DYNAMICS KINETIC EWEGY In echure we derwed am kinenc a susem u dm T= Fere ts the velouty relanve to G. for a nald body we ca wate Uing the vechor nidontklyAxB=Ax
文档格式:PDF 文档大小:88.09KB 文档页数:5
In this lecture, we consider the problem of a body in which the mass of the body changes during the motion, that is, m is a function of t, i.e. m(t). Although there are many cases for which this particular model is applicable, one of obvious importance to us are rockets. We shall see that a significant fraction of the mass of a rocket is the fuel, which is expelled during flight at a high velocity and thus, provides the propulsive force for the rocket
文档格式:PPS 文档大小:85.5KB 文档页数:35
MATLAB语言是一种广泛应用于工程计 算及数值分析领域的新型高级语言,自1984 年由美国 Math Works公司推向市场以来, 历经十多年的发展与竞争,现已成为国际公 认的最优秀的工程应用开发环境。 MATLAB功能强大、简单易学、编程效率 高,深受广大科技工作者的欢迎
文档格式:PPT 文档大小:217KB 文档页数:8
1920年,美国物理学家康普顿在观察X射线被物质 散射时,发现散射线中含有波长发生变化了的成分
首页上页112113114115116117118119下页末页
热门关键字
搜索一下,找到相关课件或文库资源 1223 个  
©2008-现在 cucdc.com 高等教育资讯网 版权所有