点击切换搜索课件文库搜索结果(990)
文档格式:PDF 文档大小:263.37KB 文档页数:4
采用种子乳液聚合制备了聚苯乙烯/聚吡咯(PS/PPY)复合微球,以其为载体负载钼活性中心制备了PS/PPY复合微球负载钼系催化剂,系统研究了载体性质对负载型催化剂催化环辛烯环氧化反应的催化活性.结果表明:亲水性的负载型催化剂在以过氧化氢为氧源的催化体系中催化活性较高;聚合物的掺杂离子对催化剂的催化性能具有重要影响,以硝酸铁为氧化剂制备的负载型催化剂的催化活性最高,催化环辛烯环氧化的转化率可以达到90%
文档格式:PPT 文档大小:3.18MB 文档页数:91
6.1 反馈的基本概念及判断方法 6.2 负反馈放大电路的四种基本组态 6.4 深度负反馈放大电路放大倍数分析 6.6 负反馈放大电路的稳定性 6.3 负反馈对放大电路的方框图 6.5 负反馈对放大电路性能的影响
文档格式:PDF 文档大小:394.7KB 文档页数:6
通过分析太钢4350m3高炉(5#高炉)炉缸以上冷却系统的设计特点,研究其在高煤比、高产量情况下炉内煤气流分布对炉体热负荷的影响.结果表明:太钢5#高炉的边缘气流指数W值控制在0.55左右;中心气流指数Z值应控制在8.8左右;5#高炉下部炉腰炉腹的热负荷较为稳定,而炉身的中上部稳定性较差;5#高炉的热负荷还有降低的潜力,热负荷控制在10~120GJSh-1范围4350m3高炉仍可稳定操作
文档格式:PDF 文档大小:671.18KB 文档页数:5
通过建立保护渣道压力计算模型,研究了保护渣道压力随结晶器振动的周期性变化规律以及保护渣道形状参数、连铸工艺参数和保护渣黏度对渣道压力的影响.结果表明:结晶器达到最大上振速度和最大下振速度时,渣道压力分别达到最大负压和最大正压;保护渣道形状参数对渣道压力有重要影响,渣道入口宽度和出口宽度增加,渣道正负压力都明显下降,而渣道长度增加,渣道正负压力最大值都增加;拉坯速度与结晶器振动速度都影响渣道压力,拉坯速度增加,渣道最大负压增加,而最大正压减小;结晶器振动速度和保护渣黏度增加,使渣道最大正负压力都增加
文档格式:PDF 文档大小:576.74KB 文档页数:7
研究了早龄期冻结压力等荷载、负温及早龄期荷载和负温耦合作用对冻结竖井井壁C60混凝土抗压强度、氯离子扩散系数和声发射特征的影响,并通过扫描电镜分析其内部微裂缝.结果表明:早龄期荷载加载时间越早对混凝土28d抗压强度的影响越大,当外部荷载作用时间在3d以后且荷载水平在混凝土当天强度40%以内时,混凝土28d强度几乎不受影响;冻结井井帮负温环境会延缓井壁混凝土早期水化,防冻剂的加入利于加快混凝土水化和强度的发展;在早龄期荷载及负温耦合作用下,混凝土28d抗压强度降低明显,氯离子扩散系数大大增加,混凝土的渗透性由\中\变为\高\,内部产生了缺陷和微裂缝导致声发射\活跃阶段\提前,且混凝土呈现明显的塑性变形
文档格式:PDF 文档大小:585.99KB 文档页数:7
当前,为了改善负荷传感器的性能,传感器经常设计成:迫使由被测负荷所形成的应力均布及集中于弹性体上的一个或几个力路中。被集中的应力由应变计来检测,其输出将精确的对应于被测负荷。在本文中,这种集中应力的技术被概括为集中应力原理。文中详细介绍了此原理及通过例子介绍了这种技术在负荷传感器设计中的应用
文档格式:PPT 文档大小:105.5KB 文档页数:13
4.4电压负反馈和电流正反馈自动调速系统 一、电压负反馈调速系统 1、组成:从并联在电枢两端电位器RP上取出一 部分电压ur作为负反馈电压
文档格式:DOC 文档大小:9.12MB 文档页数:22
一、在括号内填入“√”或“×”,表明下列说法是否正确。 (1)若放大电路的放大倍数为负,则引入的反馈一定是负反馈。() (2)负反馈放大电路的放大倍数与组成它的基本放大电路的放大倍数量纲相同。() (3)若放大电路引入负反馈,则负载电阻变化时,输出电压基本不变。()
文档格式:PPT 文档大小:454KB 文档页数:13
4.1负反馈放大电路的组成和基本类型 引言 4.1.1反馈放大电路的组成及基本关系式 4.1.2负反馈放大电路的基本类型 4.1.3负反馈放大电路分析
文档格式:PDF 文档大小:1.02MB 文档页数:8
通过水溶液还原法在80 ℃合成Cu纳米线,再利用液相还原法在低温水溶液中将Au负载于其表面,最后通过暴露的Cu纳米线与Pt前驱体盐发生Galvanic置换反应,将Pt负载在Au?Cu纳米线表面,构成Pt?Au?Cu三元核壳结构纳米线。根据对样品形貌、结构的表征和分析,探讨了Pt?Au?Cu纳米线的合成机理。结果表明:合成纳米线物相组成为单质Cu,平均直径约为83 nm;负载Au后的Au?Cu纳米线平均直径约为90 nm,表面附着的小颗粒为单质Au颗粒,构成了核壳结构;负载Pt后得到Pt?Au?Cu三元核壳结构纳米线,平均直径约为120 nm。Cu纳米线表面Au颗粒的形成依赖于异相形核与长大机制,并遵循先层状后岛状生长的混合生长模式。负载Pt过程中存在Pt、Cu互扩散,使得最终纳米线表面多为Pt颗粒而整体则形成CuPt 合金相
首页上页910111213141516下页末页
热门关键字
搜索一下,找到相关课件或文库资源 990 个  
©2008-现在 cucdc.com 高等教育资讯网 版权所有