点击切换搜索课件文库搜索结果(1701)
文档格式:DOC 文档大小:194KB 文档页数:3
设V是复线性空间.V×V上的一个函数,如果满足 (i)(·,·)对第一个变量是线性的 (i)(a,B)=(B (ii1)ya∈V,(a,a)≥0,且(a,a)=0分a=0 则称(a,B)为向量a,B的内积,具有内积的复线性空间称为酉空间(欧氏空间在复线性 空间上的推广)
文档格式:PPT 文档大小:567KB 文档页数:27
一、主要内容 二重积分的计算方法是累次积分法,化二重 积分为累次积分的步骤是: ①作出积分区域的草图 ②选择适当的坐标系 ③选定积分次序,定出积分限 1。关于坐标系的选择 这要从积分区域的形状和被积函数的特点 两个方面来考虑
文档格式:PPT 文档大小:482.5KB 文档页数:12
一、多项式整除的概念 1.多项式的整除性 设f(x),()F[x,若存在h(x)∈F[x,使 f(x)=g(x)h(x),则说g(x)整除f(x),记为:
文档格式:PPT 文档大小:215.5KB 文档页数:12
一. 向量到子空间的距离 二. 最小二乘法
文档格式:DOC 文档大小:50.5KB 文档页数:2
定理7设A是n维线性空间V的一个线性变换A的矩阵可以在某一基下为 对角矩阵的充要条件是A有n个线性无关的特征向量. 定理8属于不同特征值的特征向量是线性无关的 推论1如果在n维线性空间V中,线性变换的特征多项式在数域P中有n 个不同的根,即A有n个不同的特征值,那么A某组基下的矩阵是对角形的 推论2在复数上的线性空间中,如果线性变换A的特征多项式没有重根
文档格式:DOC 文档大小:66.5KB 文档页数:2
定义6设A是线性空间V的一个线性变换,的全体像组成的集合称为 的值域,用AV表示所有被A变成零向量的向量组成的集合称为A的核,用 A-(0)表示 若用集合的记号则AV={A55∈V},a-(0)={A5=0,5∈V} 线性变换的值域与核都是V的子空间 AV的维数称为A的秩,A-(0)的维数称为A的零度
文档格式:DOC 文档大小:419.5KB 文档页数:5
第八章有理整数环 8-1有理整数环的基本概念 8.1.1有理整数环的基本概念 全体整数所组成的集合中有两种运算:加法和乘法,而且它们满足下面运算法则: (1)加法满足结合律; (2)加法满足加换律 (3)有一个数0,是对任意整数a,0+a=a; (4)对任意整数a,存在整数b,使b+a=0 (5)乘法满足结合律 (6)有一个数1,是对任意整数a,la=a
文档格式:DOC 文档大小:83KB 文档页数:2
定义9欧氏空间V的线性变换A叫做一个正交变换如果它保持向量的内积 不变,即对任意的,都有a,B∈V,都有 (Aa, AB)=(a, B)
文档格式:DOC 文档大小:63.5KB 文档页数:3
经过非退化线性替换,二次型的矩阵变成一个与之合同的矩阵.由第四章§4 定理 4,合同的矩阵有相同的秩,这就是说,经过非退化线性替换后,二次型矩 阵的秩是不变的.标准形的矩阵是对角矩阵,而对角矩阵的秩就等于它对角线上 不为零的平方项的个数
文档格式:PPT 文档大小:714KB 文档页数:25
二重积分的计算法(1) 一、利用直角坐标系计算二重积分 如果积分区域为:a≤x≤b,1(x)≤y≤2(x)
首页上页141142143144145146147148下页末页
热门关键字
搜索一下,找到相关课件或文库资源 1701 个  
©2008-现在 cucdc.com 高等教育资讯网 版权所有