点击切换搜索课件文库搜索结果(1563)
文档格式:DOC 文档大小:287.5KB 文档页数:4
第三章3-1,3-2n阶方阵的行列式 3.1.1平行四边形的有向面积和平行六面体的有向体积具有的三条性质 在解析几何中已证明,给定二维向量空间中的单位正交标架,设向量a,B的坐标分别 为(a1,a2)和(b,b2),则由向量a,B张成的平行四边形的有向面积为ab2-a2b,这里记 为;给定三维空间内右手单位正交标架,设向量a,B,y的坐标分别为(a1,a2,a3) (b1,b2,b3)和(1,C2,C3),则由向量a,B,y张成的平行六面体的有向体积为 (ab2-a2b1)c1+(a3b1-ab3)c2+(ab2-a2b1)C3
文档格式:DOC 文档大小:87KB 文档页数:2
第二章2矩阵的秩 2.1.1矩阵的行秩与列秩、矩阵的转置 定义2.1矩阵的行秩与列秩。 一个矩阵A的行向量组的秩成为A的行秩它的列向量组的秩称为A的列秩。 命题2.1矩阵的行(列)初等变换不改变行(列)秩 证明只需证明行变换不该行秩。容易证明经过任意一种初等行变换,得到的行向 量组与原来的向量组线性等价,所以命题成立。证毕。 定义2.2矩阵的转置 把矩阵A的行与列互换之后,得到的矩阵A称为矩阵A的转置矩阵 命题2.2矩阵的行(列)初等变换不改变列(行)秩
文档格式:DOC 文档大小:544.5KB 文档页数:19
设P是数域,是一个文字,作多项式环P,一个矩阵如果它的元素是 的多项式,即P[]的元素,就称为-矩阵在这一章讨论λ矩阵的一些性 质,并用这些性质来证明上一章第八节中关于若当标准形的主要定理 因为数域P中的数也是P]的元素,所以在λ矩阵中也包括以数为元素 的矩阵.为了与-矩阵相区别,把以数域P中的数为元素的矩阵称为数字矩 阵.以下用A(),B()…等表示-矩阵 我们知道,P]中的元素可以作加、减、乘三种运算,并且它们与数的运 算有相同的运算规律而矩阵加法与乘法的定义只是用到其中元素的加法与乘 法,因此可以同样定义λ-矩阵的加法与乘法,它们与数字矩阵的运算有相同 的运算规律 行列式的定义也只用到其中元素的加法与乘法,因此,同样可以定义一个 nxn的-矩阵的行列式.一般地,-矩阵的行列式是的一个多项式,它与 数字矩阵的行列式有相同的性质
首页上页150151152153154155156157
热门关键字
搜索一下,找到相关课件或文库资源 1563 个  
©2008-现在 cucdc.com 高等教育资讯网 版权所有