点击切换搜索课件文库搜索结果(2595)
文档格式:DOC 文档大小:40.5KB 文档页数:3
1.1 概述 定义:电机就是一种将机电能量进行转换的电磁装置。 包括机械能→电能;电能→机械能;电能→电能。 特点:(1)它依赖于电磁感应定律和电磁力定律
文档格式:PDF 文档大小:698.78KB 文档页数:37
数字集成电路是用来专门处理数字信号的,各种逻辑门、触发器、存储器等 电路都是数字集成电路。通常,数字信号是二进制信号。数字电路的工作特点是: 电路输出的二进制信号与输入二进制信号有一定的逻辑关系,这个逻辑关系就称 为电路的逻辑函数。 在正常的电压工作范围内,数字信号电压的幅度是被量化了的:某一电压范 围代表二进制状态中的一个状态,另一电压范围则代表了另一个状态。这两个范 围之间是不确定范围,不确定范围应尽可能小,这就使电路完全工作在非线性状 态,如图 3-1 所示
文档格式:PDF 文档大小:2.5MB 文档页数:8
采用动电位扫描技术和慢应变速率拉伸试验研究了超高强度钢300M在3.5%NaCl溶液中的应力腐蚀行为,并利用扫描电镜观察了不同外加电位下的断口形貌.300M钢在3.5%NaCl溶液中开路电位下的应力腐蚀开裂机制为阳极溶解型,Cl-的存在明显地增加了材料的应力腐蚀开裂敏感性.阳极电位-600 mV下300M钢溶解速率加快,表现出较高的应力腐蚀开裂敏感性,断面收缩率损失由开路电路下的52.6%升高至99.5%,裂纹起源于表面点蚀坑处,应力腐蚀开裂为阳极溶解型机制.阴极电位-800 mV下材料处于阴极保护电位范围,表现出较低的应力腐蚀开裂敏感性,强度和韧度与空气中拉伸的数值相近,开裂机制为阳极溶解和氢致开裂协同作用.在更低电位(低于-950 mV)下,300M钢的应力腐蚀开裂机制为氢致开裂,在氢和拉应力的共同作用下表现出很大的应力腐蚀开裂敏感性
文档格式:PPT 文档大小:2.99MB 文档页数:116
本章从电路的组成及其分类出发,介绍了电路模型的概念、求解电路模型的基本定律、电阻元件、电源元件的联接方式及其特点;在此基础上进一步介绍电路分析的常用方法:如等效变换、支路电流、结点电压、叠加原理、戴维宁定理等
文档格式:PDF 文档大小:406.85KB 文档页数:5
研制采用 1支 GTO'S和 6支SCR组成的1种新型变频调速装置。用来控制逆变器中的SCR 换向时刻,并在交流输出端并联3个电容器,其作用是为了提供换向条件,吸收过电压尖峰和减少输出电流的谐波。用变频调速装置拖动2 kW感应电动机,测定电动机的电压和电流波形。通过与普通电流型变频调速装置的电机电压和电流波形相比较,该装置适用于风机或泵类负载的交流调速装置
文档格式:PPT 文档大小:167KB 文档页数:14
二阶电路:用二阶微分方程描述的动态电路 设电容C原已充电其电压为U,电感中的初始电流为,t0时,开 关S闭合,则此过程是二阶电路的零输入响应
文档格式:PDF 文档大小:3.33MB 文档页数:8
分析了三相-单相矩阵变换器(3-1MC)输入侧低次谐波的产生原因,推导了功率补偿拓扑结构下的输出侧与补偿侧调制函数约束关系式.研究输入电压不平衡下,含电容补偿单元的3-1MC单网侧电流反馈控制策略无法对输入两相旋转坐标轴(dq轴)下的直轴与交轴电流分量实现无静差控制,提出了在功率补偿下对输入三相电流作正序、负序dq轴分解,分别独立对输入双dq轴下正序、负序电流作解耦内环,输出侧与补偿侧电压加权合成为外环的双闭环控制.实验与仿真结果均表明该策略不仅使3-1MC具有功率补偿功能,而且有效抑制了电压不平衡引起的输入电流与输出电压所含低次谐波,提高了3-1MC在单相用电场合的实用性
文档格式:PDF 文档大小:350.95KB 文档页数:62
本章重点是阻抗和导纳的概念、正弦稳态电路的分析方法、以及正弦稳态电路的功率,难点是正弦稳态电路的分析计算。 1. 阻抗和导纳的定义及含义; 2. 电路的相量图; 3. 一般正弦稳态电路的分析方法— 电阻电路分析方法的推广; 4. 瞬时功率、有功功率、无功功率、视在功率、功率因数、复功率的概念与计算; 5. 有功功率、无功功率的测量; 6. 最大功率传输条件及其计算;
文档格式:PPT 文档大小:1.68MB 文档页数:60
3.1电路的图 3.2KCL和KVL的独立方程数 3.3支路电流法 3.4网孔电流法 3.5回路电流法 3.6结点电压法
文档格式:PPT 文档大小:376KB 文档页数:20
6-1三相异步电动机的机械特性 6-2三相鼠笼异步电动机的起动方法 6-3三相绕线式异步电动机的起动方法 6-4三相异步电动机的调速方法 6-5三相异步电动机的制动运行
首页上页164165166167168169170171下页末页
热门关键字
搜索一下,找到相关课件或文库资源 2595 个  
©2008-现在 cucdc.com 高等教育资讯网 版权所有