点击切换搜索课件文库搜索结果(207)
文档格式:PDF 文档大小:65.34KB 文档页数:6
Lecture D32: Damped Free Vibration Spring-Dashpot-Mass System k Spring Force Fs =-kx, k>0 Dashpot Fd =-cx, c>0 Newton's Second Law (mx =EF) mx +cx+kx (Define)Natural Frequency wn=k/m,and
文档格式:PDF 文档大小:110.28KB 文档页数:6
When the only force acting on a particle is always directed to- wards a fixed point, the motion is called central force motion. This type of motion is particularly relevant when studying the orbital movement of planets and satellites. The laws which gov- ern this motion were first postulated by Kepler and deduced from observation. In this lecture, we will see that these laws are a con- sequence of Newton's second law. An understanding of central
文档格式:PDF 文档大小:1.08MB 文档页数:6
D244BD RIGID BODY DYNAMICS KINETIC EWEGY In echure we derwed am kinenc a susem u dm T= Fere ts the velouty relanve to G. for a nald body we ca wate Uing the vechor nidontklyAxB=Ax
文档格式:PDF 文档大小:177.06KB 文档页数:6
In this lecture, we consider the motion of a 3D rigid body. We shall see that in the general three dimensional case, the angular velocity of the body can change in magnitude as well as in direction, and, as a consequence, the motion is considerably more complicated than that in two dimensions. Rotation About a Fixed Point We consider first the simplified situation in which the 3D body moves in such a way that there is always a point, O, which is fixed. It is clear that, in this case, the path of any point in the rigid body which is at a
文档格式:PDF 文档大小:120.88KB 文档页数:6
In this lecture, we will revisit the principle of work and energy introduced in lecture D7 for particle dynamics, and extend it to 2D rigid body dynamics. Kinetic Energy for a 2D Rigid Body We start by recalling the kinetic energy expression for a system of particles derived in lecture D17
文档格式:PDF 文档大小:143.21KB 文档页数:9
Non-Inertial Reference Frame Gravitational attraction The Law of Universal Attraction was already introduced in lecture D1. The law postulates that the force of attraction between any two particles, of masses M and m, respectively, has a magnitude, F, given by F= (1) where r is the distance between the two particles, and G is the universal constant of gravitation. The value of G is empirically determined to be
文档格式:PDF 文档大小:103.33KB 文档页数:8
In addition to the equations of linear impulse and momentum considered in the previous lecture, there is a parallel set of equations that relate the angular impulse and momentum. Angular Momentum We consider a particle of mass, m, with velocity v, moving under the influence of a force F. The angular momentum about point O is defined as the \moment\ of the particle's linear
文档格式:PDF 文档大小:107.72KB 文档页数:8
In lecture D2 we introduced the position velocity and acceleration vectors and referred them to a fixed cartesian coordinate system. While it is clear that the choice of coordinate system does not affect the final answer, we shall see that, in practical problems, the choice of a specific system may simplify the calculations considerably. In previous lectures, all the vectors at all points in the trajectory were expressed in the
文档格式:PDF 文档大小:80.54KB 文档页数:6
In this course we will study Classical Mechanics. Particle motion in Classical Mechanics is governed by Newton's laws and is sometimes referred to as Newtonian Mechanics. These laws are empirical in that they combine observations from nature and some intuitive concepts. Newton's laws of motion are not self evident. For instance, in Aristotelian mechanics before Newton, force was thought to be required in order
文档格式:PDF 文档大小:179.79KB 文档页数:13
accelerations account for non-central forces(drag, thrust, etc. X-axis in zenith, y-axis in frames velocity, and z-axis in transverse directions 8 Free orbit solution where 'A and 'B' are lengths and'a andB are phase angles
首页上页1415161718192021下页末页
热门关键字
搜索一下,找到相关课件或文库资源 207 个  
©2008-现在 cucdc.com 高等教育资讯网 版权所有