点击切换搜索课件文库搜索结果(1705)
文档格式:PDF 文档大小:65.34KB 文档页数:6
Lecture D32: Damped Free Vibration Spring-Dashpot-Mass System k Spring Force Fs =-kx, k>0 Dashpot Fd =-cx, c>0 Newton's Second Law (mx =EF) mx +cx+kx (Define)Natural Frequency wn=k/m,and
文档格式:PDF 文档大小:210.01KB 文档页数:35
一、斯威齐模型 二、也称为折弯需求曲线模型。 三、由美国经济学家斯威齐于1939年提出。 四、用于解释一些寡头市场上的价格刚性现象
文档格式:PDF 文档大小:110.28KB 文档页数:6
When the only force acting on a particle is always directed to- wards a fixed point, the motion is called central force motion. This type of motion is particularly relevant when studying the orbital movement of planets and satellites. The laws which gov- ern this motion were first postulated by Kepler and deduced from observation. In this lecture, we will see that these laws are a con- sequence of Newton's second law. An understanding of central
文档格式:PDF 文档大小:92.42KB 文档页数:6
In this lecture, we will consider how to transfer from one orbit, or trajectory, to another. One of the assumptions that we shall make is that the velocity changes of the spacecraft, due to the propulsive effects, occur instantaneously. Although it obviously takes some time for the spacecraft to accelerate to the velocity of the new orbit, this assumption is reasonable when the burn time of the rocket is much smaller than the period of the orbit. In such cases, the Av required to do the maneuver is simply the difference between the
文档格式:PDF 文档大小:177.06KB 文档页数:6
In this lecture, we consider the motion of a 3D rigid body. We shall see that in the general three dimensional case, the angular velocity of the body can change in magnitude as well as in direction, and, as a consequence, the motion is considerably more complicated than that in two dimensions. Rotation About a Fixed Point We consider first the simplified situation in which the 3D body moves in such a way that there is always a point, O, which is fixed. It is clear that, in this case, the path of any point in the rigid body which is at a
文档格式:PDF 文档大小:118.58KB 文档页数:8
In this lecture, we will revisit the application of Newton's second law to a system of particles and derive some useful relationships expressing the conservation of angular momentum. Center of Mass Consider a system made up of n particles. A typical particle, i, has mass mi, and, at the instant considered, occupies the position Ti relative to a frame xyz. We can then define the center of mass, G, as the point
文档格式:PDF 文档大小:93.25KB 文档页数:7
Inertial reference frames In the previous lecture, we derived an expression that related the accelerations observed using two reference frames, A and B, which are in relative motion with respect to each other. aA =aB+(aA/ B)'y'' 22 x (DA/ B) 'y'2'+ TA/B+ X TA/B). (1) Here, aA is the acceleration of particle A observed by one observer, and
文档格式:PDF 文档大小:80.81KB 文档页数:5
So far we have used Newton's second law= ma to establish the instantaneous relation between the sum of the forces acting on a particle and the acceleration of that particle. Once the acceleration is known,the velocity (or position) is obtained by integrating the expression of the acceleration (or velocity). There are two situations in which the cumulative effects of unbalanced forces acting on a particle are of interest to us. These involve:
文档格式:PDF 文档大小:85.64KB 文档页数:5
In this lecture we will look at some applications of Newton's second law, expressed in the different coordinate systems that were introduced in lectures D3-D5. Recall that Newton's second law F=ma, (1) is a vector equation which is valid for inertial observers. In general, we will be interested in determining the motion of a particle given
文档格式:PDF 文档大小:108.11KB 文档页数:7
We will start by studying the motion of a particle. We think of particle as a body which has mass, but has negligible dimensions. Treating bodies as particles is, of course, an idealization which involves an approximation. This approximation may be perfectly acceptable in some situations and not adequate in some other cases. For instance, if we want to study the motion of planets it is common to consider each planet as a particle
首页上页164165166167168169170171下页末页
热门关键字
搜索一下,找到相关课件或文库资源 1705 个  
©2008-现在 cucdc.com 高等教育资讯网 版权所有