点击切换搜索课件文库搜索结果(861)
文档格式:PDF 文档大小:199.89KB 文档页数:36
在微积分学中,微分法、积分法是研究函数性质的重要 方法。 在复变函数中,微分法、积分法是研究复变函数性质的 重要方法和解决实际问题的有力工具
文档格式:PPT 文档大小:192KB 文档页数:84
要有三个转变,一是要从以教室为 中心,转为以图书馆为中心;二要 从以听课为中心,转为以自学和阅 读原著为中心;三要从以老师为中 心,转为以自我为中心
文档格式:PPT 文档大小:294.5KB 文档页数:18
一、泰勒级数 二、函数展开成幂级数 函数f(x)是否能在某个区间内“展开成幂级数”,就是说,是否能找到这样一个幂级数,它在某区间内收敛,且其和恰好就是给定的函数f(x).如果能找到这样的幂级数,则称函数f(x)在该区间内能展开成幂级数
文档格式:PPT 文档大小:47KB 文档页数:2
设函数fx)在点x的某一邻域U(x0)内具有各阶导数,则fx) 在该邻域内能展开成泰勒级数的充分必要条件是fx)的泰勒 公式中的余项R(x)当n->0时的极限为零,即
文档格式:PPT 文档大小:44KB 文档页数:1
简要证明由极限的定义可知,对ε=,存在自然数N 当n>N时,有不等式 1-1
文档格式:PPT 文档大小:48.5KB 文档页数:2
定理1阿贝尔定理) 如果幂级数Σaxn当x=x(x≠0)时收敛,则适合不等式 kxl的一切x使幂级数Σanx绝对收敛. 反之,如果幂级数Σanxn当x=x,时发散,则适合不等式 x>lxl的一切x使幂级数axn发散
文档格式:PPT 文档大小:47KB 文档页数:1
定理7莱布尼茨定理) 如果交错级数∑(-1)nun满足条件:则级数收敛,且其和s≤u,其余项r的绝对值run 简要证明设级数的前n项部分和为S2可写成
文档格式:PPT 文档大小:44.5KB 文档页数:1
简要证明仅就uvn(n=1,2,…)的情形证明 设级数v收敛,其和为,则级数un的部分和 S=u1+u2++unv1+v2+…+vno(n=1,2,), 即部分和数列{sn}有界.因此级数un收敛 反之,若级数un发散,则级数∑v,必发散.这是因为如果 级数∑v收敛,由已证结论,级数un也收敛,矛盾
文档格式:PPT 文档大小:42KB 文档页数:1
定理3(收敛数列的保号性) 如果数列{xn}收敛于a,且a>0(或aN时,有xn>0(或x0的情形证明. 由数列极限的定义,对ε=>0,3NN,当n>N时,有
文档格式:PPT 文档大小:67KB 文档页数:1
高斯公式:=Pdydz+dx+ Rdxdy. 简要证明设Ω是一柱体,下边界曲面为1:z=z1(x,y),上 边界曲面为2:=2(x,y),侧面为柱面3;Σ1取下侧,Σ2取上侧, Σ3取外侧. 根据三重积分的计算和对坐标的曲面积分的计算得
首页上页1516171819202122下页末页
热门关键字
搜索一下,找到相关课件或文库资源 861 个  
©2008-现在 cucdc.com 高等教育资讯网 版权所有