点击切换搜索课件文库搜索结果(30)
文档格式:PDF 文档大小:1.05MB 文档页数:19
§1.1. Sums and Products §1.2. Basic Algebraic Properties §1.3. Further Properties §1.4. Moduli §1.5. Conjugates §1.6. Exponential Form §1.7. Products and Quotients in Exponential Form §1.8. Roots of Complex Numbers §1.9. Examples §1.10. Regions in the Complex Plane
文档格式:PDF 文档大小:439.03KB 文档页数:11
§3.1. The Exponential Function §3.2. The Logarithmic Function §3.3. Branches and Derivatives of Logarithms §3.4. Some Identities on Logarithms §3.5. Complex Power Functions §3.6. Trigonometric Functions §3.7. Hyperbolic Functions §3.8. Inverse Trigonometric and Hyperbolic Functions
文档格式:PDF 文档大小:1.12MB 文档页数:29
§5.1. Convergence of Series §5.2. Taylor Series §5.3. Examples §5.4. Laurent Series §5.5. Examples §5.6. Absolute and Uniform Convergence of Power Series §5.7. Continuity of Sums of Power Series §5.8. Integration and Differentiation of Power Series §5.9. Uniqueness of Series Representations §5.10. Multiplication and Division of Power Series
文档格式:PDF 文档大小:270.42KB 文档页数:21
§7.1. Evaluation of Improper Integrals §7.2. Examples §7.3. Improper Integrals From Fourier Analysis §7.4. Jordan’s Lemma §7.5. Indented Paths §7.6. An Indentation Around a Branch Point §7.7. Definite Integrals Involving Sine and Cosine §7.8. Argument Principle §7.9. Rouche’s Theorem
文档格式:PDF 文档大小:1.36MB 文档页数:23
§8.1. Conformal mappings §8.2. Unilateral Functions §8.3. Local Inverses §8.4. Affine Transformations §8.5. The Transformation = /1 zw §8.6. Mappings by /1 z §8.7. Fractional Linear Transformations §8.8. Cross Ratios §8.9. Mappings of the Upper Half Plane
文档格式:PDF 文档大小:1.11MB 文档页数:26
§6.1. Residues §6.2. Cauchy’s Residue Theorem §6.3. Using a Single Residue §6.4. The Three Types of Isolated Singular Points §6.5. Residues at Poles §6.6. Examples §6.7. Zeros of Analytic Functions §6.8. Uniquely Determined Analytic Functions §6.9. Zeros and Poles §6.10. Behavior of f Near Isolated Singular Points §6.11. Reflection Principle
文档格式:PDF 文档大小:2.85MB 文档页数:42
§4.1. Derivatives of Complex-Valued Functions of §4.2. Definite Integrals of Functions w §4.3. Paths §4.4. Path Integrals §4.5. Examples §4.6. Upper Bounds for Integrals §4.7. Primitive Functions §4.8. Examples §4.9. Cauchy Integral Theorem §4.10. Proof of Cauchy Integral Theorem §4.11. Extended Cauchy Integral Theorem §4.12. Cauchy Integral Formula §4.13. Derivatives of Analytic Functions §4.14. Liouville’s Theorem §4.15. Maximum Modulus Principle
文档格式:PDF 文档大小:1.62MB 文档页数:25
§2.1. Functions of a Complex Variable §2.2. Mappings §2.3. The Exponential Function and its Mapping Properties §2.4. Limits §2.5. Theorems on Limits §2.6. Limits Involving the Point at Infinity §2.7. Continuity §2.8. Derivatives §2.9. Differentiation Formulas §2.10. Cauchy-Riemann Equations §2.11. Necessary and Sufficient Conditions for Differentiability §2.12. Polar Coordinates §2.13. Analytic Functions §2.14. Examples §2.15. Harmonic Functions
文档格式:PPT 文档大小:1.33MB 文档页数:22
一、调和函数的定义 二、解析函数与调和函数的关系 三、小结与思考
文档格式:PPT 文档大小:1.34MB 文档页数:22
一、问题的提出 二、柯西积分公式 三、典型例题 四、小结与思考
上页123下页
热门关键字
搜索一下,找到相关课件或文库资源 30 个  
©2008-现在 cucdc.com 高等教育资讯网 版权所有