点击切换搜索课件文库搜索结果(180)
文档格式:PDF 文档大小:458.02KB 文档页数:4
在非结构化数据挖掘结构模型——发现特征子空间模型(DFSSM)——的运行机制下,提出了一种新的Web文本聚类算法——基于DFSSM的Web文本聚类(WTCDFSSM)算法.该算法具有自稳定性,无须外界给出评价函数;能够识别概念空间中最有意义的特征,抗噪声能力强.结合现代远程教育网应用背景实现了WTCDFSSM聚类算法.结果表明:该算法可以对各类远程教育站点上收集的文本资料信息自动进行聚类挖掘;采用网格结构模型,帮助人们进行文本信息导航;从海量文本信息源中快速有效地获取重要的知识
文档格式:PDF 文档大小:431.73KB 文档页数:6
针对部分聚类算法对数据输入顺序敏感的问题,定义了不干涉序列指数,提出了应用不干涉序列指数对分类数据进行加权排序的方法,并基于该方法对受数据输入顺序影响的CABOSFV_C分类数据高效聚类算法进行改进,提出了考虑加权排序的聚类算法(CABOSFV_CSW),消除了算法对数据输入顺序的敏感性.采用UCI基准数据集进行实验,发现应用加权升序排序的CABOSFV_CSW算法在处理分类数据时,聚类质量较原始CABOSFV_C算法和其他受数据输入顺序影响的算法在准确性上有改善,在稳定性上有显著提高
文档格式:PDF 文档大小:422.59KB 文档页数:9
由于时间序列数据具有高维度、动态性等特点,这就导致传统的数据挖掘技术很难有效的对其进行处理,为此,提出了一种基于多维时间序列形态特征的相似性动态聚类算法(similarity dynamical clustering algorithm based on multidimensionalshape features for time series,SDCTS).首先,提取多维时间序列的特征点以实现降维,然后,根据多维时间序列的斜率、长度和幅值变化的形态特征定义了一种新的时间序列相似性度量标准,进而提出无需人为给定聚类个数的多维时间序列动态聚类算法.实验结果表明,与其他算法相比,此算法对时间序列具有良好的聚类效果
文档格式:PPT 文档大小:434KB 文档页数:14
灰色聚类是根据灰色关联矩阵或灰数的白化权函数将 些观测指标或观测对象聚集成若干个可以定义类别的方 法。按聚类对象划分,可以分为灰色关联聚类和灰色白化 权函数聚类
文档格式:PDF 文档大小:1.92MB 文档页数:10
传统的分类算法大多假设数据集是均衡的,追求整体的分类精度.而实际数据集经常是不均衡的,因此传统的分类算法在处理实际数据集时容易导致少数类样本有较高的分类错误率.现有针对不均衡数据集改进的分类方法主要有两类:一类是进行数据层面的改进,用过采样或欠采样的方法增加少数类数据或减少多数类数据;另一个是进行算法层面的改进.本文在原有的基于聚类的欠采样方法和集成学习方法的基础上,采用两种方法相结合的思想,对不均衡数据进行分类.即先在数据处理阶段采用基于聚类的欠采样方法形成均衡数据集,然后用AdaBoost集成算法对新的数据集进行分类训练,并在算法集成过程中引用权重来区分少数类数据和多数类数据对计算集成学习错误率的贡献,进而使算法更关注少数数据类,提高少数类数据的分类精度
文档格式:PPT 文档大小:298.5KB 文档页数:39
基本概念 第一节 非随机交配现象 第二节 正聚类交配 第三节 反聚类交配 第四节 其他聚类交配形式 第五节 细胞群体遗传学
文档格式:PDF 文档大小:1.46MB 文档页数:41
1、聚类算法简介 2、K-means算法 3、DBSCAN算法 4、层次聚类算法
文档格式:PPT 文档大小:236.5KB 文档页数:31
2.1 距离分类器 2.2 聚类分析 ◼ 简单聚类法 ◼ 系统聚类法 ◼ 动态聚类法
文档格式:PPT 文档大小:2.36MB 文档页数:114
聚类分析 1 聚类分析的基本思想 2 相似度的度量 3 种系统聚类法 4 系统聚类方法的SPSS实现 5 K-均值聚类法的SPSS实现
文档格式:PDF 文档大小:319.5KB 文档页数:5
利用K均值聚类和增量学习算法扩大训练样本规模,提出一种改进的mRMR SBC.一方面,利用K均值聚类预测测试样本的类标签,将已标记的测试样本添加到训练集中,并在属性选择过程中引入一个调节因子以降低K均值聚类误标记带来的风险.另一方面,从测试样本集中选择有助于提高当前分类器精度的实例,把它加入到训练集中,来增量地修正贝叶斯分类器的参数.实验结果表明,与mRMR SBC相比,所提方法具有较好的分类效果,适于解决高维且含有较少类标签的数据集分类问题
上页12345678下页末页
热门关键字
搜索一下,找到相关课件或文库资源 180 个  
©2008-现在 cucdc.com 高等教育资讯网 版权所有