点击切换搜索课件文库搜索结果(2134)
文档格式:PDF 文档大小:215.18KB 文档页数:47
一、本单元的内容要点 本单元讨论重积分在几何、物理中应用。 主要内容有: 1.曲面的面积 2.重心坐标 3.转动惯量 4.引力
文档格式:PDF 文档大小:82.69KB 文档页数:1
本课程是为数学系本科高年级学生开设的. 本课程讲述一般空间上的测度论的基础知 识和欧氏空间 n R 上的 Lebesgue 测度与积分理论. 现代数学的许多分支如概率论, 泛函分析, 群上调和分析等越来越多的用到一般空间 上的测度理论. 对数学专业的学生而言, 掌握一般空间上的测度论的基础知识, 已经变得越 来越重要. 因此本课程将一般空间上的测度论和 n R 上的 Lebesgue 积分结合起来讲述
文档格式:PDF 文档大小:393.33KB 文档页数:46
在实际应用中,常常需要考察某种物理量(如温度,密度,电场 强度,力,速度等)在空间的分布和变化规律,从数学和物理上看这 就是 场的概念
文档格式:PDF 文档大小:188.57KB 文档页数:22
性质1(线性性)设f(x)和8(x)都在[a,b上可积,k1和k2是常数 小函数kf(x)+k2g(x)在a,b上也可积,且有 ∫k/(x)+k8(x)x=k(x)dx+Jg(x)x 证对anb的任意一个划分 q=x0
文档格式:PPT 文档大小:487.5KB 文档页数:13
1. 定积分的应用几何方面 : 面积、体积、弧长、表面积 .物理方面 : 质量、作功、侧压力、引力、 2. 基本方法 : 微元分析法微元形状 : 条、段、带、片、扇、环、壳 等.转动惯量
文档格式:PDF 文档大小:142.78KB 文档页数:5
1 试用积分法写出图示梁的挠曲轴方程,说明用什么条件决定方程中积分常数,画出挠曲 轴大致形状。图中 C 为中间铰。 E I 为已知。 w 解题分析:梁上中间铰处,左、右挠度相等,转角 不相等
文档格式:PPT 文档大小:1.72MB 文档页数:53
Green公式 设L为平面上的一条曲线,它的方程是r(t=x(t)i+y(t)j,at≤ 如果r(a)=r(B),而且当t,t2∈(a,B),t≠t2时总成立r(t)≠r(t2),则称 L为简单闭曲线(或 Jordan曲线)。这就是说,简单闭曲线除两个端 点相重合外,曲线自身不相交
文档格式:PPT 文档大小:1.15MB 文档页数:31
重积分的性质 性质1(线性性)设f和g都在区域Ω上可积,a,B为常数,则 af+Bg在上也可积,并且 (af+Bg)dv =a fdv+ gdv Ω 性质2(区域可加性)设区域Ω被分成两个内点不相交的区域 Q1和2,如果f在Q上可积,则f在21和2上都可积;反之,如 果f在Ω1和Q2上可积,则f也在上可积
文档格式:PPT 文档大小:959.5KB 文档页数:29
无界区域上的反常重积分 设 D为平面 2 R 上的无界区域,它的边界是由有限条光滑曲线组 成的。假设D上的函数 f (x, y) 具有下述性质:它在D中有界的、可求 面积的子区域上可积。并假设所取的割线 为一条面积为零的曲线
文档格式:PPT 文档大小:391KB 文档页数:14
外微分 设UcR为区域,f(,x2,xn)为U上的可微函数,则它的全微 分为 这可以理解为一个0形式作微分运算后成为1-形式
首页上页199200201202203204205206下页末页
热门关键字
搜索一下,找到相关课件或文库资源 2134 个  
©2008-现在 cucdc.com 高等教育资讯网 版权所有